SLIDES: Unconventional Gas and Oil – Potential Air Emissions

John Imse

Follow this and additional works at: http://scholar.law.colorado.edu/air-quality-impacts-from-oil-and-gas-development

Part of the Administrative Law Commons, Business Administration, Management, and Operations Commons, Energy Law Commons, Energy Policy Commons, Environmental Health and Protection Commons, Environmental Law Commons, Environmental Policy Commons, Health Policy Commons, Hydraulic Engineering Commons, Hydrology Commons, Litigation Commons, Natural Resources Law Commons, Natural Resources Management and Policy Commons, Oil, Gas, and Energy Commons, Oil, Gas, and Mineral Law Commons, Property Law and Real Estate Commons, Science and Technology Commons, State and Local Government Law Commons, and the Urban Studies Commons

Citation Information

http://scholar.law.colorado.edu/air-quality-impacts-from-oil-and-gas-development/1

This Conference Proceeding is brought to you for free and open access by the 2012 at Colorado Law Scholarly Commons. It has been accepted for inclusion in Air Quality Impacts from Oil and Gas Development (January 27) by an authorized administrator of Colorado Law Scholarly Commons. For more information, please contact erik.beck@colorado.edu.
Reproduced with permission of the Getches-Wilkinson Center for Natural Resources, Energy, and the Environment (formerly the Natural Resources Law Center) at the University of Colorado Law School.

Reproduced with permission of the Getches-Wilkinson Center for Natural Resources, Energy, and the Environment (formerly the Natural Resources Law Center) at the University of Colorado Law School.
Unconventional Gas and Oil – Potential Air Emissions

CU Natural Resources Law Center – Denver, Co
January 27, 2012
What Makes Tight Oil & Gas “Unconventional”?

- In a conventional play (oil or gas) you typically have 3 separate features:
 - Source rock/material
 - Reservoir Interval
 - Trap

- In a Tight Formation Play the shale interval is:
 - Source Rock
 - Reservoir
 - Trap
Advances in Directional Drilling Key

- Pairing Directional Drilling with Hydraulic Fracturing allows for tapping the source rock while creating the reservoir interval.

- Directional and horizontal drilling techniques enable tapping relatively thin units along a horizontal well bore that may exceed 5000 feet. Current longest horizontal footprint in Marcellus 9663 feet (~1.8 miles)

- Technology enables multiple horizontal wells drilled/developed from a single pad location – 4 to 8 wells from a single drilling pad not uncommon.

- Each well may have from a few as 4 to as many as 20 fracturing intervals.
Example Horizontal Well

- Treatable Groundwater Aquifers
- Private Well
- Municipal Water Well: < 1,000 ft.
- Additional steel casing and cement to protect groundwater
- Protective Steel Casing
- Shale Fractures
Multi-Well Pad Coverage
Potential Airborne Releases

- Drilling and Development
 - Relatively short term from exposure perspective
 - Keep in mind – neighbors have different perspective

- Production
 - Longer term
Site Development

- Potential significant increase in truck and equipment traffic/operations
- Potential increase in dust as well as engine exhaust
Hydraulic Fracturing

- Vehicle exhaust
- Fugitive emissions
 - operational equipment
 - methane
 - “wet gas” components
Well Completions

- Traditional configurations receiving greater scrutiny as potential significant sources for fugitive release of methane
- USEPA released proposed NSPS in July to require “green completions” – capture/flaring of the methane emissions
- CO and WY have regs in place – many companies consider this SOP