SLIDES: Lower Arkansas Valley Super Ditch Company, Inc.: Water Leasing Program

Peter Nichols

Follow this and additional works at: https://scholar.law.colorado.edu/evolving-regional-frameworks-for-ag-to-urban-water-transfers

Part of the Agriculture Law Commons, Climate Commons, Contracts Commons, Hydrology Commons, Law and Economics Commons, Marketing Commons, Natural Resource Economics Commons, Natural Resources and Conservation Commons, Natural Resources Law Commons, Natural Resources Management and Policy Commons, Property Law and Real Estate Commons, State and Local Government Law Commons, Urban Studies and Planning Commons, Water Law Commons, and the Water Resource Management Commons

Citation Information

Reproduced with permission of the Getches-Wilkinson Center for Natural Resources, Energy, and the Environment (formerly the Natural Resources Law Center) at the University of Colorado Law School.
Historical Buy and Dry-up

- **Colorado Springs**
 - $$$$$$$
 - Share Holder
 - Share Holder
 - Share Holder
 - Share Holder

- **Aurora**
 - $$$$$$$
 - Share Holder
 - Share Holder
 - Share Holder
 - Share Holder

- **Others**
 - PBWW
 - Pueblo West
 - Fountain
 - Etc.

- **Colorado Canal**
 - Share Holder
 - Share Holder
 - Share Holder

- **Rocky Ford Canal**
 - Share Holder
 - Share Holder
 - Share Holder

- **Others**
 - Las Animas
 - Highline
 - Holsom
Historical Buy and Dry-up

- **One time deal**
 - Shareholders are paid off and water is transferred to municipal use

- **Land permanently dried up**
 - No more irrigation
 - Limited/no further agricultural productivity
 - Weed and erosion problems occur despite revegetation statute

- **Cities (purchasers) realize the appreciating value of the water**
Water Leasing

- **Colorado Springs**
 - $$$$$$$
 - H_2O

- **PPRWA**
 - $$$$$$$
 - H_2O

- **CDOW/Parks**
 - $$$$$$$
 - H_2O

- **Other/Ag**
 - $$$$$$$
 - H_2O

- **Ft. Lyon**
 - Share Holder
 - Share Holder

- **Rocky Ford Highline**
 - Share Holder
 - Share Holder
 - Share Holder

- **Catlin Canal**
 - Share Holder
 - Share Holder
 - Share Holder

Super Ditch Company
Super Ditch - Water Leasing

- Creates new crop - water
 - Additional source of revenue for farmers and ranchers
- Annual, multi-year short and long-term leases
- Land not permanently dried up
 - Agricultural productivity continues
 - Community/economic activity continues
 - Most water remains in irrigation use every year
- Shareholders realize the appreciating value of the water
What Super Ditch Company must do to succeed

- Maximize the short- and long-term value of irrigation water to the Lower Valley
 - For cities, provide a reliable, cost-competitive alternative source of water
 - For irrigators, provide an economically attractive alternative to farming or selling
“Super Ditch Company”

- Mechanism to lease water from irrigators who are willing to forgo irrigation to municipalities and other users
- Created, Controlled and Owned by participating irrigators
 - Managed by Board of Directors elected by participating irrigators
 - Collective negotiation levels playing field with municipal users
 - Irrigators may participate to extent they wish
 - All irrigators treated equally
 - % non-irrigated, lease revenue / ac-ft
- Responsible for leasing water, obtaining water court approval, and 1041 permits
- Determine which lands will not be irrigated each year based on supply, lease demand, and hydrology
Lower Arkansas Valley Super Ditch Company, Inc.

- Incorporated May 7, 2008
- Shareholders from 6 of 7 primary ditches
- Invited potential lessees to get acquainted meetings in June and July
- Negotiating with 2 potential lessees
 - One formal offer
 - Negotiations proceeding
- Operating with support of LAVWCD
 - Formal contract re: support, independence
Studies Completed

- Potential supply of irrigation water for lease
- Demand for water leasing (lease market)
- Existing and needed storage and conveyance
- Water quality
- Farm and regional economics
- Alternative legal structures for Super Ditch Co.
- “1041” permitting requirements
- Ditch company restrictions on participation
- Anti-trust issues
- Taxation of lease revenues
Primary Ditch Systems within Area of Interest

Arkansas River Ditch System Schematic
Water Rights Investigated
CU factors from the H-I model used in the most recent *Kansas vs. Colorado* litigation

CU Factor was multiplied by the diversion amount to obtain the consumptive use for each irrigation system

<table>
<thead>
<tr>
<th>#</th>
<th>Ditch/ Canal</th>
<th>Consumptive Use Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bessemer</td>
<td>0.5916</td>
</tr>
<tr>
<td>2</td>
<td>Rocky Ford Highline</td>
<td>0.5553</td>
</tr>
<tr>
<td>3</td>
<td>Oxford Farmers</td>
<td>0.4728</td>
</tr>
<tr>
<td>4</td>
<td>Otero</td>
<td>0.5675</td>
</tr>
<tr>
<td>5</td>
<td>Catlin Canal</td>
<td>0.4634</td>
</tr>
<tr>
<td>6</td>
<td>Holbrook</td>
<td>0.5771</td>
</tr>
<tr>
<td>7</td>
<td>Fort Lyon Storage Canal</td>
<td>0.5094</td>
</tr>
<tr>
<td>8</td>
<td>Fort Lyon Canal</td>
<td>0.5094</td>
</tr>
</tbody>
</table>
Yield Estimate at Headgate by Ditch by Year

Estimated Available Water for Lower Arkansas River Ditches of Interest

- ROCKY FORD HIGHLINE
- OXFORD FARMERS DITCH
- OTERO CANAL
- HOLBROOK CANAL
- FORT LYON STORAGE and CANAL
- CATLIN CANAL
- BESSEMER DITCH

Estimated Available Water (AF): 0, 50,000, 100,000, 150,000, 200,000, 250,000, 300,000, 350,000, 400,000.
Summary of Annual Yields at Headgate

<table>
<thead>
<tr>
<th>Condition</th>
<th>AF/Yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wet Year</td>
<td>329,000</td>
</tr>
<tr>
<td>Average Year</td>
<td>255,000</td>
</tr>
<tr>
<td>Dry Year</td>
<td>192,000</td>
</tr>
<tr>
<td>Extreme Dry Year (2002)</td>
<td>93,000</td>
</tr>
</tbody>
</table>
Potential water volumes (65 % participation)

- Assumed participation rate: 65%
 - Can be different for each ditch

- Assumed fallowing rate: 25%
 - Can be different for each ditch

- Assuming no additional storage and 65% participation:

<table>
<thead>
<tr>
<th>Market</th>
<th>Tier Volume</th>
<th>Total Volume Available</th>
<th>Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry Year</td>
<td>14,020 AF</td>
<td>14,020 AF</td>
<td>Very Reliable</td>
</tr>
<tr>
<td>Average Year</td>
<td>14,609 AF</td>
<td>28,629 AF</td>
<td>Full delivery in 16 of 29 years; deliveries made in 27 of 29 years</td>
</tr>
<tr>
<td>Wet Year</td>
<td>16,787 AF</td>
<td>45,417 AF</td>
<td>Inconsistent, but deliveries will occur</td>
</tr>
</tbody>
</table>
Water available for lease, based on 65% participation rate, frequency, exchange factors, and no additional storage.
Marginal analysis of additional storage (for illustration only)
Exchange Potential

Percent of Consumptive Use realized in Pueblo Reservoir

Exchange Potentials

<table>
<thead>
<tr>
<th>Reach</th>
<th>Below Pueblo Reservoir (Bessemer)</th>
<th>Below Rocky Ford Highline Canal</th>
<th>Below Oxford Farmers Canal</th>
<th>Below Otero Canal</th>
<th>Below Catlin Canal</th>
<th>Below Holbrook Canal</th>
<th>Below Fort Lyon</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average (1979)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>0.77</td>
<td>0.74</td>
<td>0.71</td>
<td>0.62</td>
<td>0.52</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td>Wet (1980)</td>
<td>1.00</td>
<td>0.82</td>
<td>0.80</td>
<td>0.77</td>
<td>0.71</td>
<td>0.67</td>
</tr>
<tr>
<td></td>
<td>Dry (1981)</td>
<td>1.00</td>
<td>0.68</td>
<td>0.65</td>
<td>0.62</td>
<td>0.46</td>
<td>0.42</td>
</tr>
</tbody>
</table>
Pipeline Feasibility Study

- Based on delivery to point in Northeastern El Paso County for PPRWA *et al.*
 - Diversion near Boone
 - Diversion at Ft Lyon headgate
 - Pipeline to Boone, then North
 - Diversion fr Timber Lake on Ft Lyon
 - Pipeline to headgate, then West to Boone
Pipeline Alternatives
Lower River Pipeline Alternatives
Water Quality Diminishes Downstream

- Average Specific Conductance (μS/cm) vs. Approximate miles downstream of Pueblo Reservoir

- Locations: Fountain Creek, Avondale, Fowler, La Junta, John Martin Res.
What’s lease water worth?

One measure: avoided costs

$/AF/year

<table>
<thead>
<tr>
<th></th>
<th>Water</th>
<th>Infrastructure</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colorado Springs Utilities, SDS</td>
<td>$1,200</td>
<td>$1,200</td>
<td>$1,200</td>
</tr>
<tr>
<td>Pikes Peak Regional Water Authority</td>
<td>$500</td>
<td>$500</td>
<td>$500</td>
</tr>
<tr>
<td>Aurora</td>
<td>$300</td>
<td>$300</td>
<td>$300</td>
</tr>
<tr>
<td>Power generation</td>
<td>$300</td>
<td></td>
<td>$300</td>
</tr>
<tr>
<td>Windy Gap Firming Project</td>
<td>$500-$1,100</td>
<td>$500-$1,100</td>
<td>$500-$1,100</td>
</tr>
<tr>
<td>Reuter-Hess Reservoir (Parker)</td>
<td></td>
<td>$800</td>
<td>$800</td>
</tr>
<tr>
<td>Colorado-Big Thompson</td>
<td>$500</td>
<td></td>
<td>$500</td>
</tr>
<tr>
<td>Northern Integrated Storage Project</td>
<td></td>
<td>$510</td>
<td>$510</td>
</tr>
<tr>
<td>Denver Moffat System Expansion</td>
<td>$350</td>
<td>$350</td>
<td>$350</td>
</tr>
<tr>
<td>ECCV/ACWWA/South Metro</td>
<td>$533</td>
<td>$750</td>
<td>$1,283</td>
</tr>
<tr>
<td>Aurora Prairie Waters</td>
<td>$1,200</td>
<td></td>
<td>$1,200</td>
</tr>
</tbody>
</table>
Issues to work through with potential participating irrigators

- Variation in yield and water value among ditches
 - More reliable, more easily delivered, and/or higher quality water is worth more
- Delivery issues to irrigated land with less water in ditch (laterals)
- What land will be not be irrigated and when
 - Whether irrigator can permanently dry up some poor land, or whether there must be rotational fallowing
- Farmer concern about diminished productivity after fallowing
Example of cooperation leading to increased bargaining power and higher contract prices

<table>
<thead>
<tr>
<th></th>
<th>Individual, one-to-one transactions</th>
<th>Rocky Ford Highline and Fort Lyons work</th>
<th>Rocky Ford Highline, Fort Lyons, and Bessemver</th>
<th>The four ditch companies work cooperatively</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rocky Ford Highline</td>
<td>$1.10</td>
<td>$1.20</td>
<td>$1.26</td>
<td>$1.35</td>
</tr>
<tr>
<td>Fort Lyons</td>
<td>$2.35</td>
<td>$2.94</td>
<td>$3.33</td>
<td>$3.92</td>
</tr>
<tr>
<td>Bessemer</td>
<td>$0.86</td>
<td>$0.86</td>
<td>$0.95</td>
<td>$1.00</td>
</tr>
<tr>
<td>Catlin</td>
<td>$1.21</td>
<td>$1.21</td>
<td>$1.21</td>
<td>$2.02</td>
</tr>
</tbody>
</table>

Total discounted revenues over the hydrologic period 1976-2004 (million)

Revenue from individual one-to-one transactions with incrementally higher prices:

- Rocky Ford Highline: $1.10, $1.20, $1.26, $1.35
- Fort Lyons: $2.35, $2.94, $3.33, $3.92
- Bessemer: $0.86, $0.86, $0.95, $1.00
- Catlin: $1.21, $1.21, $1.21, $2.02

Benefit of additional operational efficiencies

- Additional revenues to be allocated among cooperators: $0.00, $0.18, $0.35, $0.52

Total lease revenues: $5.53, $6.39, $7.10, $8.81

% revenue increase resulting from cooperation: 15.5%, 28.3%, 59.4%
Municipal Water Supply Considerations

- Increasing resistance to large new water projects and trans-basin projects
- “Buy and dry” increasingly culturally, socially, and politically unacceptable
- Rotational fallowing could become a favored water supply alternative
 - “win-win”
 - Least environmental impact
 - Ag/commercial community benefits
 - Path of least resistance
Hypothetical Purchase vs. Lease

Assumptions
- Shares of Bessemer Ditch purchased (51%) 19,000
- Average cost per share $10,000
- "Real" rate of return on municipal investment (inflation-free) 3.00%
- "Real" discount rate (inflation-free) 3.00%

Results
Case I: Assuming PBWW only needs additional water in dry years
Net discounted cost of buying shares $73,811,000
Net discounted cost of leasing water at $740/AF, reserving at $100/AF $36,835,000
Savings from Super Ditch Co. lease 2007-2086 $36,976,000

Case 2: Assuming PBWW needs water in dry and 1000+ AF in avg years
Net discounted cost of buying shares $61,260,463
Net discounted cost of leasing ($740 dry yr; $500 avg; $100 reservation; $10 revenue from leasing unused water) $46,905,724
Savings from Super Ditch Co. lease 2007-2086 $14,354,739
Issues to work through with potential municipal lessees

- **Lease terms and conditions**
 - Municipal demand(s)/need(s)
 - Delivery schedule(s)

- Reliability
- Price
- Payment terms
- Length of lease(s)

- Competition from non-participants, e.g., other municipalities who want to buy and dry
Regional Economic Impacts

- Changes in spending by participating irrigators when fallowing
 - (seed, fertilizer sales; farm equipment repairs and sales; on-farm improvements, etc.)
- Impacts to industries and users of Lower Ark irrigated crops. e.g., local feedlots
- Impacts related to how and where water lease proceeds are spent
Economic Impact of Buy and Dry

- “Business as usual” thru 2030 (SWSI)
 - Add’l 22,000 to 72,000 acres dried up in Lower Ark on top of 60,000 acres now dry

- Total economic value of Lower Ark irrigation
 - $430/ac/year (Thorvaldson et al.)

- $9.5 million to $31 million / year lost
Legal Issues Analyzed

- Alternative legal structures for company
- Taxation of lease revenues
- Anti-trust issue
- Ditch company restrictions on participation
- County 1041 permitting requirements
- Water court change case
 - Applications structured to allow fallowing-leasing only (not buy and dry) to address “Trojan Horse” concern
Summary
Super Ditch Water Leasing

- **Advantages**
 - Municipalities/other users get water they need at competitive cost
 - Irrigators realize value of water currently
 - Plus realize appreciated value over time
 - Supports long-term regional economy

- **Challenges**
 - Willingness of users to negotiate Fair Market Value water leases
 - Cooperation among ditch companies + shareholders
 - End municipal predation + manipulation
Conclusion

- Simple idea, great potential, success depends upon willingness of users to adopt a new paradigm to meet water needs.
- Moving forward to make concept a reality
- Confident that challenges can be met