SLIDES: Smart Fallowing: New Strategies in Ag Forbearance

Bonnie Colby

Follow this and additional works at: http://scholar.law.colorado.edu/navigating-the-future-of-the-colorado-river

Part of the Administrative Law Commons, Agriculture Law Commons, Climate Commons, Comparative and Foreign Law Commons, Contracts Commons, Dispute Resolution and Arbitration Commons, Environmental Law Commons, Environmental Policy Commons, Hydrology Commons, Indian and Aboriginal Law Commons, International Law Commons, Natural Resource Economics Commons, Natural Resources and Conservation Commons, Natural Resources Law Commons, Natural Resources Management and Policy Commons, Peace and Conflict Studies Commons, President/Executive Department Commons, Public Policy Commons, Risk Analysis Commons, State and Local Government Law Commons, Transnational Law Commons, Urban Studies and Planning Commons, Water Law Commons, and the Water Resource Management Commons

Citation Information
Colby, Bonnie, "SLIDES: Smart Fallowing: New Strategies in Ag Forbearance" (2011). Navigating the Future of the Colorado River (Martz Summer Conference, June 8-10).
http://scholar.law.colorado.edu/navigating-the-future-of-the-colorado-river/3

Reproduced with permission of the Getches-Wilkinson Center for Natural Resources, Energy, and the Environment (formerly the Natural Resources Law Center) at the University of Colorado Law School.
Smart Fallowing: New Strategies in Ag Forbearance

Dr. Bonnie Colby
University of Arizona
Natural Resources Law Center Conference
June 2011
New strategies urgent:

- Climate change

Photo credit: Colorado River Water Users Association

Photo credit: Science Faction
New strategies urgent:

- Climate change
- Feds, states and cities are broke

Photo credit: Colorado River Water Users Association

Photo credit: Science Faction
New strategies urgent:

- Climate change
- Feds, states and cities are broke
- Ecosystems in decline, dependent on "leftovers"

Photo credit: Colorado River Water Users Association

Photo credit: Science Faction
New strategies urgent:

- Climate change
- Feds, states and cities are broke
- Ecosystems in decline, dependent on ”leftovers”
- Ag-env-urban linked in regional economies

 “an inextricable web of mutuality”

Photo credit: Colorado River Water Users Association

Photo credit: Science Faction
New strategies urgent:

- Climate change
- Feds, states and cities are broke
- Ecosystems in decline, dependent on "leftovers"
- Ag-env-urban interdependent in regional economies
- **Must reduce “waste”** in forbearance arrangements
“Waste” in forbearance programs?
“Waste” in forbearance programs?

- Costs high per unit of water obtained
 - Imprecision about how much water really freed up
 - Payments $> 300\%$ of crop net revenues foregone
 - High costs of conflicts and delays
“Waste” in forbearance programs?

- Costs high per unit of water obtained
- False Alarms - fallowing implemented, water not needed
 - Unnecessary water acquisition costs
 - Loss in crop production, linked econ flows
“Waste” in forbearance programs?

- Costs high per unit of water obtained
- False Alarms - fallowing implemented, water not needed
- **Avertable Costs** - fallowing not implemented, shortage occurs
 - Env & urban losses
 - Dampened regional economy
“Next Gen” Forbearance Arrangements

- Adapt with improved hydrologic info
 (snowpack: Jan 1 vs April 1 vs May 1)
Next Gen Forbearance Arrangements

- Adapt with improved hydrologic info
- **Standardized process to set forbearance payments**, indexed to crop prices, fuel costs, etc
Next Gen Forbearance Arrangements

- Adapt with improved hydrologic info
- Standardized process to set forbearance payments
- **Pay per AF of reduced ag consumptive use**
 (NOT per acre of fallowed land)
Examples: Next Gen Forbearance Arrangements

- **Seasonal fallowing** – land irrigated only in most profitable part of growing season
Seasonality of Major Crops

<table>
<thead>
<tr>
<th>Crop</th>
<th>Jan</th>
<th>Feb</th>
<th>Mar</th>
<th>Apr</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>Aug</th>
<th>Sept</th>
<th>Oct</th>
<th>Nov</th>
<th>Dec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfalfa 1st yr</td>
<td>1</td>
<td>10</td>
<td>20</td>
<td>1</td>
<td>10</td>
<td>20</td>
<td>1</td>
<td>10</td>
<td>20</td>
<td>1</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Alfalfa other yrs</td>
<td></td>
</tr>
<tr>
<td>Cotton</td>
<td></td>
</tr>
<tr>
<td>Wheat</td>
<td></td>
</tr>
<tr>
<td>Fall Lettuce</td>
<td></td>
<td></td>
<td>1</td>
<td>10</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spring Lettuce</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>10</td>
<td>20</td>
<td>1</td>
<td>10</td>
<td>20</td>
<td>1</td>
</tr>
</tbody>
</table>

Examples: Next Gen Forbearance Arrangements

- **Seasonal fallowing** – land irrigated only in most profitable part of growing season

- **Deficit irrigation** – crop produced with reduced water applications
Crop Water Production Function: crop yield changes due to changing water applications
Next Gen Forbearance Arrangements

Measurement & monitoring of reduced water consumption is key to success
 (and problematic in most forbearance programs)
Measurement and Monitoring

- Must be cost-effective
- Must be objective, trusted

Artist's Depiction of Landsat 7, Credit: NASA

Photo credit: Anderson, Kustas and Norman
Measurement and Monitoring

- Must be cost-effective
- Must be objective, trusted
- **Remote sensing** allows new possibilities

Artist's Depiction of Landsat 7, Credit: NASA

Photo credit: Anderson, Kustas and Norman
Remote Sensing (RS) currently used by water managers

Example: Lower Colorado River Accounting System
Evapotranspiration and Evaporation Calculations
Advances in RS allow tracking of crop CU at finer spatial and temporal scales:

- field, sub-field scale
- week-by-week

Mesilla Valley, New Mexico. Landsat-7 scene, delineated pecan orchards (as white polygons).
Setting Forbearance Payments

Compare two alternatives:

- Offer farmers average net revenue/acre for their area
 - offer framed in $/acre
 - farmers enroll fields based on average offer
Setting Forbearance Payments

Compare two alternatives:

- Offer farmers average net revenue/acre for their area
 - offer framed in $/acre
 - farmers enroll fields based on average offer

- OR use RS to make offers
 - use field-specific yields and CU
 - offer framed in $/AFCU
 - target fields with lowest net revenues per AFCU
lettuce yield and net revenue variability across field

adapted from Kurt Nolte, University of Arizona

yield: 700 cwt/acre
$11,900 net

yield: 800 cwt/acre
$14,100 net
Setting Forbearance Payments

Compare two alternatives:

- Offer average net revenue/acre ($/acre)
- Use RS to make offers ($/AFCU)
- **Targeted RS approach can reduce costs 15-20%**

 (California study, Medellin et al, 2011)
Setting Forbearance Payments

Compare two alternatives:

- Offer average net revenue/acre ($/acre)
- Use RS to make offers ($/AFCU)
- RS approach can reduce costs 15-20%
- RS needs to be “ground truthed”
 – field experiments in each region for major crops
Moving Ahead

Typical forbearance programs:
Costly per unit of water obtained
Inflexible - hard to change course
Moving Ahead

What’s needed?
Lower cost per unit ($/AFCU)
Nimble - quick response to new conditions

Typical forbearance programs:
Costly per unit of water obtained
Inflexible - hard to change course
Moving Ahead

What’s needed?
Lower cost per unit ($/AFCU)
Nimble - quick response to new conditions

Typical forbearance programs:
Costly per unit of water obtained
Inflexible - hard to change course
Moving Ahead

Thank you!

bcolby@email.arizona.edu
Four guidebooks on water acquisitions

To find link and download, google: Colby water guidebooks
OR go to: ag.arizona.edu/arec/people/profiles/colby.html
(guidebook links are midway down page)
Climate change - shifting means, fatter tails
Shifting mean temperatures, snowpack
Fatter tails – more extremes; drought, flood

Affects both water supply AND demand