Agricultural Water Use Efficiency

Gordon McCurry

Follow this and additional works at: https://scholar.law.colorado.edu/water-law-and-policy-reform

Part of the Natural Resources and Conservation Commons, Natural Resources Management and Policy Commons, Science and Technology Law Commons, and the Water Resource Management Commons

Citation Information

Reproduced with permission of the Getches-Wilkinson Center for Natural Resources, Energy, and the Environment (formerly the Natural Resources Law Center) at the University of Colorado Law School.

Reproduced with permission of the Getches-Wilkinson Center for Natural Resources, Energy, and the Environment (formerly the Natural Resources Law Center) at the University of Colorado Law School.
Agricultural Water Use Efficiency

Dr. Gordon McCurry
Camp Dresser & McKee

TWO DECADES OF WATER LAW AND POLICY REFORM:
A RETROSPECTIVE AND AGENDA FOR THE FUTURE

June 13-15, 2001

Natural Resources Law Center
University of Colorado School of Law
Boulder, Colorado
Outline of Comments
- Hydrology of an Irrigated Watershed
- Irrigation Efficiency and Return Flow
- Effects of Increasing Irrigation Efficiency

Hydrology in an Irrigated Watershed

Irrigation Efficiency and Return Flow
- Irrigation Efficiencies
- Typical Efficiencies:
 - Furrow: 40 – 60%
 - Sprinkler: 70 – 80%
 - Drip: 85 – 95%
- Excess that percolates to water table and migrates in aquifer back to river
Diversions & Streamflow: (50) Efficiency

Stream Flow Hydrographs

Effects of Increasing Irrigation Efficiency
• Lower percolation, recharge & return flow
• Less water in river in late season
• Fewer junior water rights receive water
 o More late-season calls on river by seniors
• Need for additional reservoirs, recharge projects
 o Cost, riparian impacts