SLIDES: Encana

John Moran

Follow this and additional works at: https://scholar.law.colorado.edu/workshop-on-directional-drilling-rocky-mountain-region

Part of the Energy and Utilities Law Commons, Energy Policy Commons, Environmental Health and Protection Commons, Environmental Law Commons, Environmental Policy Commons, Hydraulic Engineering Commons, Natural Resource Economics Commons, Natural Resources Law Commons, Natural Resources Management and Policy Commons, Oil, Gas, and Mineral Law Commons, Property Law and Real Estate Commons, Science and Technology Law Commons, and the State and Local Government Law Commons

Citation Information
https://scholar.law.colorado.edu/workshop-on-directional-drilling-rocky-mountain-region/4

Reproduced with permission of the Getches-Wilkinson Center for Natural Resources, Energy, and the Environment (formerly the Natural Resources Law Center) at the University of Colorado Law School.
Directional Possibilities

- S-Shaped Well
- Slant Well
- Horizontal Well
- Short Radius
- Re-entry
- Production Zone
Extended Reach Drilling

1 Mile Deep

6.3 Miles (33,184 ft) Displacement

1014 meters
Continuous Sand Bodies with Vertical Wells

WELL # 1

“Shaley” Zone

“Sand” Zone

WELL # 2

WELL # 3

Non-Jonah Reservoir

Continuous Sand Bodies with Vertical Wells
Continuous Sand Bodies with Horizontal Wells

“Shaley” Zone

“Sand” Zone

Non-Jonah Reservoir
Mesa Verde Stacked Sands Model
Well Log Presentation
10 – Acre Spacing
Reservoir Characterization

Datum: top Paludal Coal C
Well log from a portion of a pay zone in a Jonah well.
Discontinuous Sand Bodies with Vertical Wells

Remaining Pay Sands on 40 Acre Spacing
Discontinuous Sand Bodies with Vertical Wells

Remaining Pay Sands on 20 Acre Spacing

Jonah Type Reservoir
Discontinuous Sand Bodies with Vertical Wells

Remaining Pay Sands on 10 Acre Spacing

Sands as seen on logs may appear too small and be passed by.

Sand body completely missed even with 10 acre spacing.

Discontinuous Sand Bodies with Vertical Wells
Remaining Pay Sands With Horizontal Drilling

Horizontal wells will never work well with thick accumulations of discontinuous sands.

Discontinuous Sand Bodies with Horizontal Wells
Surface casing cemented across entire aquifer interval.
Reservoir Considerations

The Economic Drivers

As it applies to Horizontal or Extended Reach Drilling

Reservoir characteristics must support the additional costs of horizontal drilling

In certain applications, horizontal or extended reach drilling becomes the most economic alternative for reaching and developing a given reservoir

Horizontal drilling has proven to be a viable, economic technology for developing specific reservoir types (fractured, and/or low permeability)
Reservoir Considerations

The Economic Drivers

As it applies to Mesa Verde Stacked Sands

As well density increases, so then does total reservoir resource recovery increase…. (waste is minimized)

But, as well density increases, resource recovery on a per well basis *decreases*

So, as well density increases, there is a diminishing return on investment….

The additional costs of directional drilling continue to adversely impact these economics
Putting It All Together…

Where does the technology usually work?

- **Offshore**
 - When cost of infrastructure is very high

- **Unique Reservoir Types**
 - Austin Chalk or Balken Shales or excellent examples

- **Mountainous Areas (ie, Mamm Creek)**
 - When cost of access is very high

- **Urban Areas (ie, DJ Basin – Denver, and Mamm Creek)**
 - When urban development coexists with oil/gas development
Putting It All Together…
Where does the technology typically not work?

• **Reservoir Type**…
 - If the unique reservoir type does not support horizontal drilling, the vertical drilling is usually always the most economic development method

• **Difficult Drilling Areas**…
 - Where the additional costs do not economically support the effort
Back Up Slides / Pictures
Mamm Creek Field
Garfield County, Colorado
Mamm Creek Field
Garfield County, Colorado
Multi-Well Pad