SLIDES: Energy by Design: Possible BMP for Mitigation Planning

Dave Gann

Follow this and additional works at: http://scholar.law.colorado.edu/best-practices-for-community-and-environmental-protection

Part of the Administrative Law Commons, Biodiversity Commons, Dispute Resolution and Arbitration Commons, Energy Law Commons, Energy Policy Commons, Environmental Health and Protection Commons, Environmental Law Commons, Environmental Monitoring Commons, Environmental Policy Commons, Hydraulic Engineering Commons, Land Use Planning Commons, Natural Resource Economics Commons, Natural Resources and Conservation Commons, Natural Resources Law Commons, Natural Resources Management and Policy Commons, Oil, Gas, and Energy Commons, Oil, Gas, and Mineral Law Commons, Partnerships Commons, Science and Technology Commons, Soil Science Commons, State and Local Government Law Commons, Strategic Management Policy Commons, Urban Studies and Planning Commons, Water Law Commons, and the Water Resource Management Commons

Citation Information

Reproduced with permission of the Getches-Wilkinson Center for Natural Resources, Energy, and the Environment (formerly the Natural Resources Law Center) at the University of Colorado Law School.
Energy by Design:
Possible BMP for Mitigation Planning

Dave or Megan - TBD – October 14, 2009
Objective: no net loss for priority species and vegetation
Dramatically improve mitigation; reduce negative impacts and deliver no net loss or in some cases a net gain for nature

Follow “mitigation hierarchy”
Avoid, minimize, restore and then offset

Better “early warning” and planning
Reduce development-conservation conflicts

More effective use of offsets
Conservation actions that compensate for residual, unavoidable harm to natural resource values
Degree of impact mitigation using avoid \rightarrow minimize \rightarrow restore \rightarrow offset

“Early warning” & planning: development projects and conservation priorities

Biodiversity breakeven point (Zero impact; No net loss)

Anticipated Impact (net loss)

Avoided impacts

Residual Impacts (net loss)

Avoidance only

Avoidance + Min/restore

Residual Impacts (net loss)

Minimize/Restore

Avoided impacts

No net loss

Net gain

Selection of offset portfolio & accounting for no net loss

Adapted from Kiesecker et al. 2009

Sample projects

<table>
<thead>
<tr>
<th>Location</th>
<th>Mitigation Emphasis</th>
<th>Industry partner</th>
<th>Potential Application</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO - Hiawatha Field</td>
<td>On- and offsite</td>
<td>Questar</td>
<td>Hiawatha EIS</td>
<td>In progress</td>
</tr>
<tr>
<td>CO - Southwest</td>
<td>Offsite</td>
<td>BP</td>
<td>Wildlife Mitigation Plan</td>
<td>In progress</td>
</tr>
<tr>
<td>WY - Jonah Field</td>
<td>Offsite</td>
<td>BP</td>
<td>Expenditure of mitigation $</td>
<td>Complete</td>
</tr>
<tr>
<td>WY - Continental Divide – Crestone Field</td>
<td>On- and offsite</td>
<td>BP</td>
<td>EIS</td>
<td>In progress</td>
</tr>
<tr>
<td>UT – Uinta Basin</td>
<td>On- and offsite</td>
<td>Questar</td>
<td>?</td>
<td>Planned</td>
</tr>
</tbody>
</table>
Sample targets

- Greater sage-grouse
- Ferruginous hawk
- Wyoming pocket gopher
- Elk seasonal habitats
- Many others
Assemble a Team of Experts

ID Target Species & Systems
- Michael A. Smith (U of Wyoming)
- Rhen Etzmiller (BLM)
- Debbie Johnson (BLM)
- David Simons (BLM)
- Mary Read (BLM)
- Eldon Allison (BLM)
- Andy Warren (BLM)

ID Spatial Extent of Project
- Cheryl Newberry (BLM)
- Tim Woolley (WY G&F)
- Greg Hiatt (WY G&F)
- Scott Smith (WY G&F)
- Joseph Kiesecker (TNC)
- Holly Copeland (TNC)
- Amy Pocewicz (TNC)

Gather Spatial Data for Targets
- Steve Moore (Consultant)
- Douglas A. Keinath (WYNDY)
- Jason Sutter (Hayden-Wing)

Examine Development Scenario
- Don Schramm (Rock Springs Grazing Board)

Determine Impacts & Goals
- Dick Loper (Consultant)

ID “On-site” Sensitive Features

ID Offset Portfolio

Determine Offset Valuation

Approach

Validate Model Results
Assemble a Team of Experts

ID Target Species & Systems

ID Spatial Extent of Project

Gather Spatial Data for Targets

Examine Development Scenario

Determine Impacts & Goals

ID “On-site” Sensitive Features

ID Offset Portfolio

Determine Offset Valuation

Approach

Validate Model Results

Target Name
- Basin Grassland
- Black-footed ferret habitat
- Burrowing Owl
- Ferruginous hawk
- Greasewood Fans and Flats
- Great Basin spadefoot habitat
- Juniper Woodland
- Mixed Desert Shrub
- Mountain Big Sagebrush-Mixed Mountain Shrub
- Mountain Plover Habitat
- Mule deer crucial winter
- Mule deer migration corridor
- Nelson’s milkvetch
- Nelson’s milkvetch habitat
- Northern leopard frog
- Northern leopard frog habitat
- Penstemon gibbensii (Gibben’s penstemon)
- Playa
- Pronghorn crucial winter
- Pronghorn migration corridor
- Pygmy Rabbit
- Pygmy rabbit habitat
- Riparian-Wet Meadow
- Rorippa calycina (Persistent Sepal Yellowcress)
- Sage-grouse breeding areas
- Sage-grouse severe winter locations
- Sage-grouse severe winter habitat
- Saltbush Fans and Flats
- Vegetated Sand Dunes
- Wyoming Big Sagebrush-Basin Big Sagebrush
- Wyoming pocket gopher locations
- Wyoming pocket gopher habitat
Assemble a Team of Experts

ID Target Species & Systems

ID Spatial Extent of Project

Gather Spatial Data for Targets

Examine Development Scenario

Determine Impacts & Goals

ID “On-site” Sensitive Features

ID Offset Portfolio

Determine Offset Valuation Approach

Validate Model Results
Assemble a Team of Experts

ID Target Species & Systems

ID Spatial Extent of Project

Gather Spatial Data for Targets

Examine Development Scenario

Determine Impacts & Goals

ID “On-site” Sensitive Features

ID Offset Portfolio

Determine Offset Valuation

Approach

Validate Model Results
Assemble a Team of Experts
ID Target Species & Systems
ID Spatial Extent of Project
Gather Spatial Data for Targets
Examine Development Scenario
Determine Impacts & Goals
ID “On-site” Sensitive Features
ID Offset Portfolio
Determine Offset Valuation Approach
Validate Model Results
Assemble a Team of Experts

ID Target Species & Systems

ID Spatial Extent of Project

Gather Spatial Data for Targets

Examine Development Scenario

Determine Impacts & Goals

ID “On-site” Sensitive Features

ID Offset Portfolio

Determine Offset Valuation Approach

Validate Model Results

Development: 40 acre spacing

Potential Impacts: 22,867 acres of Pygmy Rabbit habitat
Assemble a Team of Experts
ID Target Species & Systems
ID Spatial Extent of Project
Gather Spatial Data for Targets
Examine Development Scenario
Determine Impacts & Goals
ID “On-site” Sensitive Features
ID Offset Portfolio
Determine Offset Valuation Approach
Validate Model Results
Assemble a Team of Experts
ID Target Species & Systems
ID Spatial Extent of Project
Gather Spatial Data for Targets
Examine Development Scenario
Determine Impacts & Goals
ID “On-site” Sensitive Features
ID Offset Portfolio
Determine Offset Valuation Approach
Validate Model Results
Offset Accounting Framework

<table>
<thead>
<tr>
<th>Hectares of impact = Goal</th>
<th>2000 ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offset portfolio</td>
<td>Site A</td>
</tr>
<tr>
<td>Hectares of suitable habitat</td>
<td>3000 ha</td>
</tr>
<tr>
<td>Conservation action</td>
<td>Protection</td>
</tr>
<tr>
<td>Expected background rate of loss (res dev)</td>
<td>10%/yr</td>
</tr>
<tr>
<td>Probability of success</td>
<td>90%</td>
</tr>
<tr>
<td>Timing (yrs to conservation maturity)</td>
<td>0 yrs</td>
</tr>
<tr>
<td>Actual offset hectares</td>
<td>1659 ha</td>
</tr>
<tr>
<td>% of goal</td>
<td>83%</td>
</tr>
<tr>
<td>Offset to impact ratio</td>
<td>1.8 to 1</td>
</tr>
<tr>
<td>Cost per hectare</td>
<td>$1,500/ha</td>
</tr>
<tr>
<td>Total cost for offset</td>
<td>$4.5 million</td>
</tr>
<tr>
<td>Cost per offset hectare delivered</td>
<td>$2,700/ha</td>
</tr>
</tbody>
</table>
Summary

EBD: Goal-based, science-based, systematic, transparent, multi-stakeholder

Potential application to industry planning, EISs, Wildlife Mitigation Plans, Comprehensive Drilling Plans, etc.

Best practice for mitigation planning? TBD