11-26-2012

SLIDES: Overview of Colorado Aquifer Systems

Christopher J. Sanchez

Follow this and additional works at: https://scholar.law.colorado.edu/monitoring-and-protecting-groundwater-during-oil-and-gas-development

Part of the Energy and Utilities Law Commons, Energy Policy Commons, Environmental Health and Protection Commons, Environmental Policy Commons, Environmental Public Health Commons, Hydraulic Engineering Commons, Natural Resources Law Commons, Natural Resources Management and Policy Commons, Oil, Gas, and Energy Commons, Water Law Commons, and the Water Resource Management Commons

Citation Information
Sanchez, Christopher J., "SLIDES: Overview of Colorado Aquifer Systems" (2012). Monitoring and Protecting Groundwater During Oil and Gas Development (November 26).

Reproduced with permission of the Getches-Wilkinson Center for Natural Resources, Energy, and the Environment (formerly the Natural Resources Law Center) at the University of Colorado Law School.
Monitoring and Protecting Groundwater During Oil & Gas Development

Overview of Colorado Aquifer Systems

November 26, 2012
Christopher J. Sanchez, P.G.

BBA water consultants
Bishop-Brogden Associates, Inc.
Colorado Aquifer Systems

• Topics
 – Locations and occurrence of:
 • Aquifer systems
 • Oil & gas basins
 – Potential contamination events
 • What types of events are we monitoring for?
 – Travel times
 – Considerations with respect to rulemaking
Colorado Oil & Gas Basins

Source: COGCC GIS database
Colorado Aquifer Systems

• Interaction of aquifers and oil and gas drilling activities
 – Focus is on sedimentary aquifer systems
 – Sedimentary bedrock and alluvial aquifers typically overlay O&G formations
 – Other aquifer types exist, but typically do not interact with O&G formations
Figure 3-3. Schematic cross section of various types of aquifers.

Source: Ground Water Atlas of Colorado
Schematic Cross-Section of Aquifer Types in Colorado

Source: Ground Water Atlas of Colorado
Simple model, sometimes but not always true

Alluvial Deposits in Colorado

Source: Ground Water Atlas of Colorado
Overlay of Alluvial Deposits and Oil & Gas Basins
Northeastern CO, Alluvial Deposits and Oil and Gas Basins
Northwestern CO, Alluvial Deposits and Oil and Gas Basins
Sedimentary Bedrock Aquifer Systems in Colorado

Source: Ground Water Atlas of Colorado
Overlay of Bedrock Aquifers and Oil and Gas Basins
Schematic geologic cross section of Denver Basin – Oil & Gas zones located in and below Pierre Shale

Source: Ground Water Atlas of Colorado
Dakota-Cheyenne Aquifer

Source: Ground Water Atlas of Colorado
Overlay of Dakota-Cheyenne Aquifer and Oil and Gas Basins
<table>
<thead>
<tr>
<th>Era</th>
<th>System</th>
<th>Series</th>
<th>Stratigraphic Unit</th>
<th>Unit Thickness (feet)</th>
<th>Physical Characteristics</th>
<th>Hydrogeologic Unit</th>
<th>Saturated Thickness (feet)</th>
<th>Hydrologic Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesozoic</td>
<td>Cretaceous</td>
<td>Upper Cretaceous</td>
<td>Pierre Shale</td>
<td>0–4,000+</td>
<td>Black to dark-gray shale</td>
<td>Confining layer</td>
<td></td>
<td>Not known to yield water to wells</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Niobrara Formation</td>
<td>200+</td>
<td>Upper unit is yellowish chalk, lower unit is chalky limestone and marl</td>
<td>Fort Hayes Limestone</td>
<td>50–60</td>
<td>Yields water to stock wells and springs north of Arkansas River</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Carlile Shale</td>
<td>200+</td>
<td>Upper unit is sandy shale; middle unit is black, fissile shale; lower unit is chalky shale</td>
<td>Codell Sandstone</td>
<td>20+</td>
<td>Yields water to a few stock wells</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Greenhorn Formation</td>
<td>65</td>
<td>Upper unit is chalky shale and thin limestone; lower unit is hard, crystalline limestone</td>
<td>Confining layer</td>
<td></td>
<td>Yields no water to wells</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Graneros Shale</td>
<td>85–100</td>
<td>Gray to black shale</td>
<td>Confining layer</td>
<td></td>
<td>Yields no water to wells</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lower Cretaceous</td>
<td>Dakota Sandstone</td>
<td>150–235</td>
<td>Fine-grained, thin-bedded to massive sandstone</td>
<td>Dakota Sandstone</td>
<td>150+</td>
<td>Yields sufficient for domestic and stock use; in some areas yields enough for municipal and industrial use</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Purgatoire Formation</td>
<td>60–350</td>
<td>Upper unit is gray to black clayey shale; lower unit is massive, fine-grained sandstone</td>
<td>Cheyenne Sandstone Member</td>
<td>30–200</td>
<td>Yields sufficient for industrial, municipal, and irrigation use</td>
</tr>
<tr>
<td>Jurassic</td>
<td></td>
<td></td>
<td>Morrison Formation</td>
<td>20–240</td>
<td>Varicolored marl</td>
<td>Confining layer</td>
<td></td>
<td>Minimal yield to wells from sandstone lenses</td>
</tr>
</tbody>
</table>

Modified from Romero, 1994

Hydrogeologic Units in Eastern CO.
All of these units are also developed for Oil & Gas
In some locations
Source: Ground Water Atlas of Colorado
Example Well Depths

• Wattenberg area (DJ O&G Basin, Denver Basin aquifer system)
 – Alluvial water supply wells: 80 ft
 – LFH water supply wells: 890 ft
 – O&G wells (Niobrara): 8000 ft
 – Dakota Formation (not aquifer at this location): 8400 ft
Considerations re. Well Depths

• Locations other than eastern Colorado
 – Water supply wells vary in depth
 – O&G wells have variable depths
 – Water supply wells may be constructed in formations not typically considered to be aquifers
 – Geology and relationship between aquifers and O&G formations may be complex
Contamination Occurrences - During O&G Drilling and Fracking

- Cement seals in boreholes prevent interaction
 - Cement plugs may fail if not properly installed
- Fractures may create conduits between aquifers and O&G wells (fracked wells)
- Surface spills
- Unforeseen events
 - There are many unknowns
 - Impossible to fully understand subsurface fluid movement
Fluid flow mechanisms

- Fluids will not migrate from oil and gas formations to aquifers unless a conduit has been created
 - New fracture
 - Well borehole
- Surface spills can contaminate aquifers
 - Spills
 - Leaky surface pits
 - Contaminants can migrate through surface streams, through aquifers, or by overland flow
Aquifer Travel Times

• Variable based on site-specific conditions
• Alluvial aquifers
 – 0.05 to 10 feet per day (18 to 3,650 ft per year)
• Bedrock aquifers
 – 0.05 to 0.5 feet per day (18 to 182 ft per year)
• Groundwater moves very slowly
 – Monitoring may need to continue for long periods to identify contaminants
• Well pumping can impact travel times
Considerations Regarding Sampling points

• Need to define what the Rules are seeking to protect
 – Existing wells?
 – All aquifers?
 – Surface water?

• Use of existing wells only will protect just that, existing wells only

• Springs provide opportunity for groundwater discharge sample

• New wells provide opportunity to sample aquifers in which no local wells are constructed at strategic aquifer locations
Water Quality Samplings

Parameters

• Parameters to be analyzed need to cover fluids introduced in borehole
• Hydrocarbon profile will help to identify O&G that may migrate from a new well
• Sampling of gas from wells is recommended if any evidence of gas in wells is present
Considerations for Rulemaking

- Contamination may occur to:
 - Shallow alluvial aquifers
 - Deeper bedrock aquifers
 - Surface water
- A single monitoring approach may not be appropriate for all situations
- Monitoring of existing wells may not be protective of all aquifer systems
- It will be cost prohibitive to construct new monitoring wells in some situations
Considerations for Rulemaking – cont.

• Contaminants may move very slowly
• Monitoring for extended time periods may be required in order to detect contaminants
• Horizontal location of O&G wells and orientation of fractures should be considered when developing monitoring strategy
• Draft rules require two samples. This may not adequately cover existing aquifers and stream systems if more than two aquifer systems and/or surface water is present.
Considerations for Rulemaking – cont.

• Monitoring program is protective for property / well owners as well as O&G operators

• Statewide consistent approach helps to streamline process and establish expectations

• Need flexibility to adjust requirements based on site-specific conditions
 – Single approach will not match all situations
Questions / Discussion

Chris Sanchez
Bishop-Brogden Associates, Inc.
csanchez@bbawater.com
www.bbawater.com
(303) 806-8952