SLIDES: CRSS lite: Screening Model for Operating Policy Evaluation and Negotiation on the Colorado River Basin

Carly Jerla

Follow this and additional works at: https://scholar.law.colorado.edu/hard-times-on-colorado-river

Part of the Hydraulic Engineering Commons, Hydrology Commons, and the Water Resource Management Commons

Citation Information

Reproduced with permission of the Getches-Wilkinson Center for Natural Resources, Energy, and the Environment (formerly the Natural Resources Law Center) at the University of Colorado Law School.

Reproduced with permission of the Getches-Wilkinson Center for Natural Resources, Energy, and the Environment (formerly the Natural Resources Law Center) at the University of Colorado Law School.
CRSS-Lite: Screening Model for Operating Policy Evaluation & Negotiation on the Colorado River Basin

NRLC Conference – Boulder, CO
June 2005
Presentation Overview

- Motivation
- Development
- Modeling Approach
- Key Features & Description
- Demonstration
- Strengths & Limitations of CRSS-Lite
- Questions
Motivation

• Prior to CRSS-Lite, 2 models used to analyze operating strategies
 – CRSS
 • Official planning model
 • Monthly timestep
 • Detailed with long run-time and a lot of data
 – CRSSez
 • “Hard-coded”, screening model
 • Annual timestep
 • Approximate operations of a virtual reservoir in the Upper Basin
 • Users can’t modify or view policy

• CRSS is too detailed, CRSSez is not detailed enough
Development: Requirements

• Stakeholder team interviewed to identify user requirements.

• Requirements
 – Must accurately represent complex Law of the River
 – Must accurately represent physical system
 – Must be flexible enough to investigate policy alternatives
 – Must provide a way to view policy to communicate alternatives and outcomes more effectively
 – Run fast enough to investigate multiple scenarios in one sitting
Development: Challenges

• Greatest modeling challenge was balancing speed and accuracy
 – Need an annual timestep for speed but Powell and Mead operations are inherently monthly in logic
 – Upper Basin operation time consuming but not part of analysis for Powell & Mead interactions
 – However, need monthly inflows from Powell and monthly storages in 5 Upper Basin reservoirs to operate Lower Basin
Modeling Approach

• Implemented in RiverWare
 – Provides programming language separate from compiled code to express policy
 – Policy drives the simulation
 – Riverware Policy Language (RPL) user-oriented, easy to write and read

• Took detailed CRSS and tried to preserve accuracy but make it faster
Key Features of CRSS-Lite

• Powell and Mead operations contained in a single rule that performs 12 monthly iterations at each run timestep
• Mead flood control algorithm implemented in C++ to improve run-time
• Required monthly data is disaggregated automatically within the model (no need for extra processing)
• Relevant data from Upper Basin above Powell operation is imported via seamless data transfer routines from CRSS
• Lower Basin detail same as CRSS
CRSS-Lite: Policy Screening Model

- Closely based on CRSS
- Objects simulate on an annual timestep
- Powell inflow and Upper Basin reservoir storages supplied as input
- Matches CRSS within 0.001%
- Run-time cut by about 70% - requires about 15 minutes for a complete run (90 traces)
Hydrologic Scenarios & Probabilistic Output

- **Index Sequential Method**
 - Cycles through period of record hydrology (1906-1995) resulting in 90 hydrologic scenarios (traces)

- **Graphical Policy Analysis Tool (GPAT)**
 - Computes statistics on model output
 - Displays statistics graphically
Interpreting & Viewing Model Output

- Many tools available to analyze model results
 - Graphical Policy Analysis Tool (GPAT)
 - System Control Table (SCT): View current state of the model in compact, easy way
 - Data Management Interface (DMI) Routines, Output Manager and Individual Slot Export as a way to transfer model results to another application for analysis
 - Snapshots & Plotting: powerful tool for analysis within the model
Demonstration 1 - View Effect of Coordinated Management on Reservoir Contents

- Compare Powell and Mead storages under "Balance Contents" and "Protect Mead 1000" scenarios
 - Run using Trace 80 hydrology, starting in 1986 – 1995 and wrapping around to use 1906 – 1916
 - Use RiverWare’s Snapshot Management tool & plotting to compare results
Demonstration 2 – View Tradeoffs of Alternative Shortage Policies

• Compare Mead elevation & Lower Basin shortage under “Protect Mead 1000” and “Protect Mead 80P1050”
 – Protect Mead 1000 is absolute protection
 – Protect Mead 80P1050 is probabilistic approach
 – Run using Trace 25 hydrology, starting in 1931 – 1951
 – Use Snapshot Management tool, Model Run Analysis & plotting to compare results
Probabilistic Shortage Policy

“Protect Mead 80P1050”

• Uses probabilistic elevation triggers to protect Mead at 1050 with 80% assurance probability
• Triggers are a function of Upper Basin demand and historical inflow to Powell
• Shortages of smaller magnitudes are incurred earlier than in Protect Mead 1000
Probabilistic Output – Reservoir Percentiles

Powell EOCY Percentile Elevations

Pool Elevation (ft)

Year

90th Percentile

50th Percentile

10th Percentile

No Protect Protect Power Pools Protect Mead 1000 Relaxed MOR & EQ Balance Contents

RECLAMATION
Strengths & Limitations of CRSS-Lite

• **Strengths**
 – Run-time reduced, accuracy preserved
 – Operational policies can be viewed and modified by user

• **Limitations**
 – Inflows to Powell are input, would need to run CRSS to address “Compact Call”
Questions?