SLIDES: Water and Development of Unconventional Oil and Gas Resources

Judy Jordan

Follow this and additional works at: https://scholar.law.colorado.edu/shale-plays-in-intermountain-west

Part of the Climate Commons, Energy and Utilities Law Commons, Energy Policy Commons, Environmental Health and Protection Commons, Environmental Law Commons, Environmental Policy Commons, Hydraulic Engineering Commons, Natural Resource Economics Commons, Natural Resources and Conservation Commons, Natural Resources Law Commons, Natural Resources Management and Policy Commons, Oil, Gas, and Energy Commons, Oil, Gas, and Mineral Law Commons, Science and Technology Law Commons, State and Local Government Law Commons, Sustainability Commons, Water Law Commons, and the Water Resource Management Commons

Citation Information

Reproduced with permission of the Getches-Wilkinson Center for Natural Resources, Energy, and the Environment (formerly the Natural Resources Law Center) at the University of Colorado Law School.
Water & Development of Unconventional Oil and Gas Resources

Judy Jordan
Oil and Gas Liaison
jjordan@garfield-county.com
Shales & tight Sands - directional drilling, fracing, deep (2000-15,000’)
Background

• Piceance Basin (13bcf/d)

• Natural gas boom since ~2000

• Garco 3000 mi²/50,000 residents

• 16 operators

• 20 active rigs now-72 at peak in ‘08
Does fracing/frac’ing/fraccing/fracking contaminate groundwater?
Fracking

- 2009 GWPC testified/published document—no contamination from fracking

- Not = no contamination from oil and gas

- Contamination resulted from:
 - operator errors
 - bad cement jobs
 - waste pits

Figure from Chesapeake Energy
(http://www.hydraulicfracturing.com/Pages/information.aspx)
Gas moves up through uncemented annulus of well to fracture nearer to surface and exits through West Divide Creek
Mamm Creek Study – Phase I

• Studied
 • WQ Reports
 • Gas Well Logs
 • Water Well Logs
 • Geologic Reports
 • Rock Outcrops
 • Aerial Photographs

• Mapped
 • Water Table
 • Gas Wells
 • Water Wells
 • Bradenhead Pressures
 • WQ Trends
 • Etc.

• Identified contaminants
Mamm Creek Hydro Study
Phase II

• Sampled domestic wells

• Isotopic analysis of methane (CH4)
 • C13 : C12 (δ13C)
 • 2H:1H (deuterium and protium)

• Found thermogenic methane

• Source?
 • Biogenic (current microbial process)
 • Thermogenic (ancient geologic process—heat and pressure over millions of years)

• What about propane, ethane, butane, BTEX?
97 wells not cemented to “standard,” which is questionable (opinion) - Definition of “bottom of aquifer” - Right: Based on stratigraphy/hydrogeology
Wrong: Default to deepest water well depth
Conclusions?

- Thermogenic methane in groundwater
- Nearly all wells uncemented at least ~2000`
- Area is highly fractured
- Overpressured formation (i.e., perfect indication of a resource “trap”)
- High Bradenhead pressures in gas wells
- Yet COGCC still allows wells to be left unsealed within the Wasatch aquifer even in new wells

“It has been said that if one laid all the world’s economists hydrogeologists end to end, they wouldn’t reach a conclusion.”
Water Concerns Water Concerns Everywhere

- Residents of TX, AR, PA, NY, CO clamoring about water & air contamination
- Moratorium in NY til April 2011
- Organizing in AR, TX, PA
- Heinz Fdn $2MM grant to fund baseline study
- Garco citizens ask BOCC to oppose downspacing
The FRAC Act and EPA’s Study

• Started with FRAC Act and EPA sampling in Pavillion WY

• Purpose to investigate potential impact of fracing on WQ and public health

• Developing study plan with guidance of SAB

• Results due by end of 2012
How are eastern shales like western tight sands?

From the film “Gasland” by Josh Fox
Answer:
They’re not; they’re in the east!

And we’re not in Kansas anymore.

Source-msn.com 11/12/10
Schematic interpretation of Divide Creek Anticline and related producing fields. In the interpreted sequence of structural development, the shallower pop-up anticline was decapitated and thrust westward due to later thrusting from the east along the Mancos detachment, leaving the deeper pop-up block to the east. A deeper, basement-involved structure is also present to the east.
Animation of fracturing from Youtube
Fracture Intersecting Borehole

- Hydrocarbons include:
 - Methane (CH4), Ethane (C2H6), Propane (C3H8), Butane (C4H10), pentane (C5H12) and hexane (C6H14)
 - BTEX (Benzene, Toluene, Xylene, Ethylbenzene)
 - +
- Fingerprinting not exact – different degradation

Source: http://www.energyindepth.org/in-depth/frac-in-depth/
What are the odds? (1/66,000,000 vs 1/97)

- 97 wells constructed with no cement to bottom of aquifer
- 2000 wells with cement only to “bottom” of aquifer + 50 (i.e. 600 feet when aquifer is 1000-2000 feet thick)
Mamm Creek Phase I

“Let me see, should I pick this one or this one, or, gee this looks good.”

• Methane in GW could come from
 • natural migration in fractures, or
 • oil and gas development, or
 • coalbed methane development

Relevant Findings:
• Geology highly fractured
• Groundwater contains NG-related contaminants
• Gas bearing Fm (Williams Fork) is overpressured
• Numerous old wells improperly constructed
West Divide Creek 2004

• Lost cement in Schwartz well

• Tried to repair

• Gas seeped into WDC

• State issued fine

• $ was applied to Mamm Creek Study