SLIDES: Summary: Sources of Stress and the Changing Context of Natural Resources Law and Policy in the New West

William R. Travis

Follow this and additional works at: https://scholar.law.colorado.edu/future-of-natural-resources-law-and-policy

Part of the Administrative Law Commons, Animal Law Commons, Biodiversity Commons, Climate Commons, Constitutional Law Commons, Courts Commons, Dispute Resolution and Arbitration Commons, Energy and Utilities Law Commons, Energy Policy Commons, Environmental Law Commons, Environmental Policy Commons, Forest Management Commons, Jurisdiction Commons, Land Use Law Commons, Law and Society Commons, Legal Education Commons, Legal Ethics and Professional Responsibility Commons, Litigation Commons, Natural Resource Economics Commons, Natural Resources and Conservation Commons, Natural Resources Law Commons, Natural Resources Management and Policy Commons, Oil, Gas, and Energy Commons, Oil, Gas, and Mineral Law Commons, Peace and Conflict Studies Commons, President/Executive Department Commons, Property Law and Real Estate Commons, Science and Technology Law Commons, State and Local Government Law Commons, Sustainability Commons, Torts Commons, Urban Studies and Planning Commons, Water Law Commons, and the Water Resource Management Commons

Citation Information
https://scholar.law.colorado.edu/future-of-natural-resources-law-and-policy/12

Reproduced with permission of the Getches-Wilkinson Center for Natural Resources, Energy, and the Environment (formerly the Natural Resources Law Center) at the University of Colorado Law School.
Summary:

Sources of Stress and the Changing Context of Natural Resources
Law and Policy in the New West

Dr. William R. Travis
Department of Geography
University of Colorado at Boulder

While the American West holds no exclusive charter on natural resources law, it has acted as crucible for natural resource and conservation practice, and served as host to important debates over water, species, forests, range, and energy policy—to which previous versions of this very conference bear evidence. The West holds the lion’s share of the nation’s carbon energy supply, and because it remains the least developed of American regions and the most dominated by public lands, it also provides the setting where the nation has established the largest national parks (in the conterminous U.S.) and where species protection and restoration plays out most prominently.

To my mind the future of the West and the future of natural resources policy, are closely bound together, and, I believe that future is one in which large, enduring forces, of both nature and society, are on a collision course.

Socio-Demographic Trends

The demographic momentum of the West is remarkable: the region is growing faster than the nation as a whole, and has done so for much of its history (Figure 1). And this growth is remarkably balanced across all the forces that can grow a regional population: the West is the preferred landing spot for international immigrants to the U.S. (documented and undocumented), it is the preferred target of domestic immigrants, especially from the Midwest and Northeast, and it is the most fertile and youngest part of the U.S. (Figure 2), factors which ensure future growth. Additionally, this momentum is now less tied to traditional economics in the sense that the West attracts people not just because it grows jobs, but because more people now locate due to quality of life, landscape, recreation, etc. And just to put the icing on the West’s demographic cake, the nation is on the verge of the largest retirement surge in its history, and the West enjoys a positive perception among retirees.

Land Use Trends

Perhaps the bigger story about population growth in the American West is that the land use ‘footprint” of that population is enlarging per capita in the region. Here are some ways that works:

- More/Larger houses per capita (more families per capita as of the 2000 census!)
- Longer commutes (“extreme commuting”)
- Enlarged commercial and infrastructure land uses per capita
- Inefficient regional land use (duplication)
- Further reach for resources like water & recreation into wildlands and onto public lands.

So, for example, during 1980-2000 Colorado’s population grew 49%, while urban/suburban land use grew 65%. Additionally, it is my assessment that the changing geographic location of development in the West is such that it further complicates resources management and environmental protection. In particular, not only does the region host the fastest growing cities in the nation’s absolutely driest environments, but expanding exurbs mean a growing impact on the edge of wildlands—leading to conflicts between development and species, wildfire, and other natural processes.

Resource Demand / Pressure on Land and Habitat

Partly because of the region’s growing population and expanding economy, many of the West’s resources are also under increasing pressure (though this, of course, is also fueled by national and international socio-economic trends, like the price of oil and the growth of international tourism). For example, simultaneously with another major energy rush, the West is also dramatically growing its recreational facilities: all the major, and many minor, ski resorts in the region are adding new facilities, expanding base villages and adding to
on-mountain facilities. Many are expanding their ski terrain, and one totally new major resort has opened in Idaho (Tamarack).

Despite efforts to protect roadless areas, the West's most natural landscapes are being whittled away, on public and private land, by the above forces, especially suburban and exurban sprawl on the latter, and energy development and the expansion of recreation on the former. A few counter-trends obtain. There's some evidence that we're in a transition in ranching in the West, where the grazing demand on public lands is waning and, in my view, likely to decline faster in the future. This does not necessarily mean an end to the federal range conflicts, which are driven as much by fees and some species regulations (especially for predators) as they are by environmental limits on grazing pressure, but new types of ranch owners, emerging conservation practices, and market pressures are yielding a different rangeland regime.

Resource Quality

I am not an ecologist, but it does not take a biology degree to recognize that, despite some improvements (e.g., in water and air quality), most ecological assessments find mostly negative trends. Both the national (*State of the Nation's Ecosystems*, from the Heinz Center) and global (*Millennium Ecosystems Assessment*, from the UN) recent ecological assessments find mostly negative ecosystem trends, and I see no reason to dispute these trends in the West (though no western regional assessment has been made, to my knowledge). There is also little of a sanguine nature in projections of global warming impacts, nationally and in the American West (as indicated in Jerry Meehl and Chris Field's presentations/papers at the 2006 NRLC conference).

The science foundation for the threat of global warming is well established, and its regional manifestations are coming into better focus as actual trends and climate model output add to our understanding. The West will experience significant warming over the next century, and though Western precipitation projections vary, the warming effect on evapotranspiration and snowmelt assures the region an altered runoff regime; probably less total, but certainly earlier and more concentrated runoff in many key watersheds, trends that inevitably complicate water resources management. Even if precipitation does not decline in average, new information coming form the models and paleo-climatological studies indicate that the West will experience more frequent and more intense drought episodes over the next century. A real challenge in all climate-related trends is that shifts in mean conditions can be accompanied by significant changes in frequency and magnitude of extreme events.

Furthermore, a significant amount of warming through the middle of this century is already committed in the earth's climate system, even if the global community acts assiduously to reduce GHG emissions (and any delay simply worsens and prolongs the ultimate warming). The IPCC Fourth Assessment Report (IPCC AR4) Working Group 3 summary issued in Bangkok in May, suggests that with great effort we might be able to keep global warming to an additional 2 degrees C this century. I doubt it, and the West may warm more than 2 degrees even if the global average can be held to that threshold.

An Ill-fated Future?

Dismal scenarios are easy to develop: Global warming and forest dynamics will conspire to create a couple of decades of much more widespread fires in the West (as occurred in the past record), but this recycling of the region's forests will occur when they are more involuted with development than ever before---this will be costly and painful episode, that will certainly force some policy changes.

While there is plenty of water in the West for urban growth, assuming it can and will move from agriculture, the resource is likely to become more unreliable such that urban supply systems will find themselves forced to do two unpleasant things: obtain larger supply compared to use in order to firm up reliability, and to declare more frequent shortages, and, eventually, permanent water rationing.

Land development and climate change, together, will stress habitat and species, such that conservation investments will become more risky, that is, the probability that any conservation plan will meet its objectives will decline. The general ecological notion is that systems undergoing stress tend to degrade, even as they attempt to adjust to new conditions. So the conservation problem is not just one of planning for change (e.g., protecting migration corridors, refugia, etc.), but of recognizing that some systems will degrade no matter what conservation plans are in place.
Socio-demographic trends

Land use trends

Climate change
Growth in the American West

More “boom” than “bust”
At least 28 million more by 2030.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nevada</td>
<td>1,201,833</td>
<td>1,998,257</td>
<td>66</td>
<td>4,282,102</td>
<td>114</td>
<td>2,283,845</td>
</tr>
<tr>
<td>Arizona</td>
<td>3,665,228</td>
<td>5,130,632</td>
<td>40</td>
<td>10,712,397</td>
<td>109</td>
<td>5,581,765</td>
</tr>
<tr>
<td>Utah</td>
<td>1,722,850</td>
<td>2,233,169</td>
<td>30</td>
<td>3,485,367</td>
<td>56</td>
<td>1,252,198</td>
</tr>
<tr>
<td>Idaho</td>
<td>1,006,749</td>
<td>1,293,953</td>
<td>29</td>
<td>1,969,624</td>
<td>52</td>
<td>675,671</td>
</tr>
<tr>
<td>Wash</td>
<td>4,866,692</td>
<td>5,894,121</td>
<td>21</td>
<td>8,624,801</td>
<td>46</td>
<td>2,730,680</td>
</tr>
<tr>
<td>Oregon</td>
<td>2,842,321</td>
<td>3,421,399</td>
<td>20</td>
<td>4,833,918</td>
<td>41</td>
<td>1,412,519</td>
</tr>
<tr>
<td>Calif</td>
<td>29,760,021</td>
<td>33,871,648</td>
<td>14</td>
<td>46,444,861</td>
<td>37</td>
<td>12,573,213</td>
</tr>
<tr>
<td>Colorado</td>
<td>3,294,394</td>
<td>4,301,261</td>
<td>31</td>
<td>5,792,357</td>
<td>35</td>
<td>1,491,096</td>
</tr>
<tr>
<td>Montana</td>
<td>799,065</td>
<td>902,195</td>
<td>13</td>
<td>1,044,898</td>
<td>16</td>
<td>142,703</td>
</tr>
<tr>
<td>NMEx</td>
<td>1,515,069</td>
<td>1,819,046</td>
<td>20</td>
<td>2,099,708</td>
<td>15</td>
<td>280,662</td>
</tr>
<tr>
<td>Wyo</td>
<td>453,588</td>
<td>493,782</td>
<td>9</td>
<td>522,979</td>
<td>6</td>
<td>29,197</td>
</tr>
<tr>
<td>TOTAL</td>
<td>51,127,810</td>
<td>61,359,463</td>
<td>20</td>
<td>89,813,012</td>
<td>46</td>
<td>28,453,549</td>
</tr>
</tbody>
</table>

29%
Continued Population Growth

+ Natural increase (high fertility)
+ Domestic migration (attractive place to live, w/ significant job growth)
+ International immigration (documented and undocumented)
Figure 3. Projected Average Annual Rate of Natural Increase Per 1,000 Population: 1995 to 2025

Source:
Footprint of Development

enlarging per capita

e.g., 1980-2000 Colorado Pop grew 49% but urban/suburban land use grew 65%.

• More/Larger houses *per capita* (*more families per capita!*)
• Enlarged commercial and infrastructure land uses
• Inefficient regional land use
• Exurbanization and longer commutes (*“extreme commuting”*)
• More development & people in the wildland interface
• Further reach for resources like water & recreation into wildlands and onto public lands.
Colorado Growth by County 1990-00

Unincorporated

Incorporated
Up against the federal lands.
Into the forest fringe.
Extensive exurbanizing zones----this case in Sierra Foothills, 2040.
Ranchland Ownership Change
Large Ranch Sales as Percentage of All Large Ranches
GYE Ranchlands Study Counties, 1990-2001

% of Large Ag Ops Sold

- Sublette: 45%
- Lincoln: 32%
- Fremont: 29%
- Park, WY: 28%
- Beaverhead: 27%
- Sweet Grass: 24%
- Park, MT: 23%
- Stillwater: 14%
- Carbon: 14%
- Madison: 13%

% of Acreage in Large Ag Ops Sold

- Sublette: 45%
- Lincoln: 32%
- Fremont: 29%
- Park, WY: 28%
- Beaverhead: 27%
- Sweet Grass: 24%
- Park, MT: 23%
- Stillwater: 14%
- Carbon: 14%
- Madison: 13%
Existing Ranch Management

SALE

Maintain Existing Management

Superficial Change in Management

- Investment Orientation
- Restore, repaint, rest

Significant Change in Management

- Specialized production
- Recreation
- Conservation
- Grazing allotment use
- Water use

Wildlife Friendly / Hunting Unfriendly

Reduced Grazing Pressure

Change in place, time and type of use
• **NEW LISTING!**

Canyon Ranch, Beaverhead County. The 1,270 acre Canyon Ranch represents an unusual opportunity to acquire 3 +/- miles of one of the finer spring creek fisheries in the west. The structural compound is well built, technologically advanced and comfortable for accommodating a single owner or a multitude of guests. With four miles of improved horse trails, miles of fishing, a world class trout lake and abundant wildlife, this is a recreational treasure *complimented by a working cattle operation*. Settled in a very scenic canyon adjacent to vast federal ground, the ranch is positioned in a relatively undiscovered part of western
Mountain Ranch
Wyoming ♦ Albany County ♦ Garrett

In the Laramie Mountains, with two large lakes, many reservoirs, live water and springs, scattered with pine and cedar trees, this 12,240± deeded-acre high mountain ranch has 840 BLM and 640 state-lease acres. It features many streams and irrigated meadows, functional cattle working facilities and a complete set of improvements. Wildlife includes mule deer, antelope, elk, bighorn sheep, upland game, waterfowl, fish, coyote, bobcat, bear and mountain lion. $4,400,000.
Less snow, more heat

The latest report from the intergovernmental Panel on Climate Change says global warming could cause a 7 to 8 degree Fahrenheit increase in the average Colorado temperatures by 2100. Some of the climate models used in the report indicate there will be little or no increase in precipitation over the century. The end result is likely to be a drier Colorado, which has many implications.

<table>
<thead>
<tr>
<th>Possible effect</th>
<th>What does it mean?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduction in snowpack</td>
<td>- Snowpacks provide most of the region’s water. As temperatures rise, more autumn and spring precipitation will fall as rain rather than snow. Spring melting would start earlier.</td>
</tr>
<tr>
<td>Shorter ski season</td>
<td>- Colorado’s $2 billion ski industry could suffer from a shorter season. The season would be squeezed on both ends, fall and spring, and attempts to make up for a natural snow deficit with man-made snow could fall short because of warmer temperatures.</td>
</tr>
<tr>
<td>Earlier peak runoff and lower summer flows</td>
<td>- As the snowpack melts sooner, winter and early spring floods could become more common. But later in the year, less water would be available to irrigate farms and water lawns.</td>
</tr>
<tr>
<td>Longer heat waves</td>
<td>- Could last two days longer than they do now, and the number of heat waves per summer could double by the end of the century. In the Denver area, climate warming could lead to nighttime lows that are 3 to 4 degrees higher during summer heat waves.</td>
</tr>
<tr>
<td>Longer growing season</td>
<td>- The length of the growing season could increase significantly across the West, a benefit if there is enough water to irrigate crops.</td>
</tr>
</tbody>
</table>

WEB SITES WITH MORE INFORMATION

| IPCC report: www.ipcc.ch | general climate: www.noaa.gov and www.ucar.edu |

Sources: Rocky Mountain/Great Basin Regional Climate-Change Assessment, Climate Change Impacts on the United States, National Center for Atmospheric Research

JOHN SOPINSKI/ROCKY MOUNTAIN NEWS
Regional Climate Projections

Coordinating Lead Authors:
Jens Hesselbjerg Christensen (Denmark), Bruce Hewitson (South Africa)

Lead Authors:
Aristita Buseuc (Romania), Anthony Chen (Jamaica), Xuejie Gao (China), Isaac Held (USA), Richard Jones (UK),
Rupa Kumar Kolli (India), Won-Tae Kwon (Republic of Korea), René Laprise (Canada), Victor Magaña Rueda (Mexico),
Linda Meana (USA), Claudio Guillermo Menéndez (Argentina), Jouko Räisänen (Finland), Annette Rinke (Germany),
Abdoulaye Sarr (Senegal), Penny Whetton (Australia)

Contributing Authors:
R. Arritt (USA), R. Benestad (Norway), M. Beniston (Switzerland), D. Bromwich (USA), D. Caya (Canada), J. Comiso (USA),
R. de Elia (Canada, Argentina), K. Dethloff (Germany), S. Emori (Japan), J. Feddema (USA), R. Gerdes (Germany),
J.F. González-Rouco (Spain), W. Gutowski (USA), I. Hanssen-Bauer (Norway), C. Jones (Canada), R. Katz (USA), A. Kitoh (Japan),
R. Knutti (Switzerland), R. Leung (USA), J. Lowe (UK), A.H. Lynch (Australia), C. Matulla (Canada, Austria), K. McInnes (Australia),
A.V. Mechaerakaya (Russian Federation), A.B. Mullan (New Zealand), M. New (UK), M.H. Nokhandan (Iran), J.S. Pal (USA, Italy),
D. Plummer (Canada), M. Rummukainen (Sweden, Finland), C. Schär (Switzerland), S. Somot (France), D.A. Stone (UK, Canada),
R. Suppiah (Australia), M. Tadross (South Africa), C. Tebaldi (USA), W. Tennant (South Africa), M. Widmann (Germany, UK),
R. Wilby (UK), B.L. Wyman (USA)

Review Editors:
Congbin Fu (China), Filippo Giorgi (Italy)

This chapter should be cited as:
Change between 1980-1999 and 2080-2099 for A1B scenario averaged over 21 models
Annual Precipitation Change

Change between 1980-1999 and 2080-2099 for A1B scenario averaged over 21 models
Winter (DJF) Precipitation Change

Change between 1980-1999 and 2080-2099 for A1B scenario averaged over 21 models
Summer (JJA) Precipitation Change

Change between 1980-1999 and 2080-2099 for A1B scenario averaged over 21 models
Summer (JJA) Temperature Change

Change between 1980-1999 and 2080-2099 for A1B scenario averaged over 21 models
Warming and Earlier Spring Increase Western U.S. Forest Wildfire Activity

Western United States forest wildfire activity is widely thought to have increased in recent decades, yet neither the extent of recent changes nor the degree to which climate may be driving regional changes in wildfire has been systematically documented. Much of the public and scientific discussion of changes in western United States wildfire has focused instead on the effects of 19th- and 20th-century land-use history. We compiled a comprehensive database of large wildfires in western United States forests since 1970 and compared it with hydroclimatic and land-surface data. Here, we show that large wildfire activity increased suddenly and markedly in the mid-1980s, with higher large-wildfire frequency, longer wildfire durations, and longer wildfire seasons. The greatest increases occurred in mid-elevation, Northern Rockies forests, where land-use histories have relatively little effect on fire risks and are strongly associated with increased spring and summer temperatures and an earlier spring snowmelt.

Wildfires have consumed increasing areas of western U.S. forests in recent years, and fire-fighting expenditures by federal land-management agencies now regularly exceed US$1 billion/year [1]. Hundreds of homes are burned annually by wildfires, and damages to natural resources are sometimes extreme and irreversible. Media reports of recent, very large wildfires (>100,000 ha) burning in western forests have garnered widespread public attention, and a recurrent 34 years of western U.S. (hereafter, “western”) wildfire history together with hydroclimatic data to determine where the largest increases in wildfire have occurred and to evaluate how recent climatic trends may have been important causal factors.

Competing explanations: Climate versus management. Land-use explanations for increased western wildfire note that extensive livestock grazing and increasingly effective fire suppression began in the late 19th and early

In contrast, climatic explanations posit that increasing variability in moisture conditions (wet/dry oscillations promoting biomass growth, then burning), and/or a trend of increasing drought frequency, and/or warming temperatures have led to increased wildfire activity (13, 14). Documentary records and proxy reconstructions (primarily from tree rings) of fire history and climate provide evidence that western forest wildfire risks are strongly positively associated with drought concurrent with the summer fire season and (particularly in ponderosa pine-dominated forests) positively associated to a lesser extent with moist conditions in antecedent years (13–18). Variability in western climate related to the Pacific Decadal Oscillation and intense El Niño/La Niña events in recent decades along with severe droughts in 2000 and 2002 may have promoted greater forest wildfire risks in areas such as the Southwest, where precipitation anomalies are significantly influenced by patterns in Pacific sea surface temperature (19–22). Although corresponding decadal-scale variations and trends in climate and wildfire have been identified in paleo studies, there is a paucity of evidence for such associations in the 20th century.

We describe land-use history versus climate as competing explanations, but they may be complementary in some ways. In some forest types, past land uses have probably increased the
Model Projections of an Imminent Transition to a More Arid Climate in Southwestern North America

Richard Seager,1 Mingfang Ting,1 Isaac Held,2,3 Yochanan Kushnir,1 Jian Lu,4 Gabriel Vecchi,2 Huei-Ping Huang,1 Nili Harnik,5 Ants Leetmaa,2 Ngar-Cheung Lau,2,3 Cuihua Li,1 Jennifer Velez,1 Naomi Naik1

1Lamont Doherty Earth Observatory of Columbia University, Palisades, NY, USA. 2NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA. 3Program in Atmospheric and Oceanic Sciences, Department of Geosciences, Princeton University, Princeton, NJ, USA. 4National Center for Atmospheric Research, Boulder, CO, USA. 5Tel Aviv University, Tel Aviv, Israel.

How anthropogenic climate change will impact hydroclimate in the arid regions of Southwestern North America has implications for the allocation of water resources and the course of regional development. Here we show that there is a broad consensus amongst climate models that this region will dry significantly in the 21st century and that the transition to a more arid climate should already be underway. If these models are correct, the levels of aridity of the recent multiyear drought, or the Dust Bowl and 1950s droughts, will, within the coming years to decades, become the new climatology of the American Southwest.

The Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) reported that the average of all the States and parts of northern Mexico. Fig. 1 shows the modeled history and future of the annual mean precipitation minus evaporation (P−E) averaged over this region for the period common to all the models, 1900–2098. The median, 25th and 75th percentiles of the model P−E distribution and the median of P and E are shown. For cases in which there were multiple simulations with a single model these were averaged together before computing the distribution. P−E equals the moisture convergence by the atmospheric flow and, over land, the amount of water that goes into runoff.

In the multi-model ensemble mean there is a transition to a sustained drier climate that begins in the late 20th and early 21st centuries. In the ensemble mean both P and E decrease
Figure ES.2. Monthly mean rim inflows for the 12 climate scenarios and historical data.

From: J.R. Lund et al., Climate Warming and California’s Water Future, in Joel B. Smith and Robert Mendelshon (eds.) The Impact of Climate Change on Regional Systems: A Comprehensive Analysis of California. (Elgar, 2007).
GOING TO THE EXTREMES
AN INTERCOMPARISON OF MODEL-SIMULATED HISTORICAL AND FUTURE CHANGES IN EXTREME EVENTS

CLAUDIA TEBALDI1, KATHARINE HAYHOE2,3, JULIE M. ARBLASTER4,5 and GERALD A. MEEHL4

1Institute for the Study of Society and Environment, National Center for Atmospheric Research (NCAR), PO BOX 3000, Boulder, CO 80301

\textbf{TABLE II}
Summary of comparisons between observed and simulated trends (1960–2000) at the global average scale, discussed in Sections 3 and 4.

<table>
<thead>
<tr>
<th>Index</th>
<th>Observed trends</th>
<th>Simulated trends</th>
</tr>
</thead>
<tbody>
<tr>
<td>\textit{Frost days}</td>
<td>Significant decreasing trend</td>
<td>Decreasing trend in all models</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Significant for a majority</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Same for hemispheric averages)</td>
</tr>
<tr>
<td>\textit{Temp range}</td>
<td>Significant decreasing trend</td>
<td>Decreasing trend in all models</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Significant for four models</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(SH sees disagreement in sign among models)</td>
</tr>
<tr>
<td>\textit{Growing season}</td>
<td>Significant increasing trend</td>
<td>Increasing trend in all models</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Significant for a majority</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Trends in SH flat for most models)</td>
</tr>
<tr>
<td>\textit{Heat waves}</td>
<td>No significant trend</td>
<td>Increasing trend in all models</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Significant for four models</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Same for hemispheric averages)</td>
</tr>
<tr>
<td>\textit{Warm nights}</td>
<td>Significant increasing trend</td>
<td>Increasing trend in all models</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Significant for a majority</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Same for hemispheric averages)</td>
</tr>
<tr>
<td>\textit{Precip >10}</td>
<td>Significant increasing trend</td>
<td>Increasing trend in all models</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Significant for a minority</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High inter-annual and inter-model variability</td>
</tr>
<tr>
<td>\textit{Dry days}</td>
<td>Significant decreasing trend</td>
<td>Increasing trend in all models</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Significant for a minority</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High inter-annual and inter-model variability</td>
</tr>
</tbody>
</table>
Looking to the Future

• A land use planning system that gets the geography right (one that bridges local to federal levels)

• Resilient vs. adaptive natural resource management and policies
 – Farm and commodities programs
 – NFMA
 – NFIP / Levees!
Far West Region (AK, CA HI, NV, OR, WA)

Source: Sonoran Institute, based on US Bureau of Economic Analysis data