SLIDES: The Peril of Energy Usage

Mike Tupper

Follow this and additional works at: http://scholar.law.colorado.edu/promise-and-peril-of-oil-shale-development

Part of the Administrative Law Commons, Climate Commons, Energy Law Commons, Energy Policy Commons, Environmental Health and Protection Commons, Environmental Law Commons, Environmental Policy Commons, Geotechnical Engineering Commons, Land Use Planning Commons, Natural Resource Economics Commons, Natural Resources Law Commons, Natural Resources Management and Policy Commons, Oil, Gas, and Energy Commons, Oil, Gas, and Mineral Law Commons, President/Executive Department Commons, Public Policy Commons, Science and Technology Commons, State and Local Government Law Commons, Water Law Commons, and the Water Resource Management Commons

Citation Information
http://scholar.law.colorado.edu/promise-and-peril-of-oil-shale-development/11

Reproduced with permission of the Getches-Wilkinson Center for Natural Resources, Energy, and the Environment (formerly the Natural Resources Law Center) at the University of Colorado Law School.
The Peril of Energy Usage

Mike Tupper
“In this house we obey the laws of thermodynamics”

The Second Law of Thermodynamics

- The universe is constantly losing usable energy and never gaining.
- Ultimately there would be no available energy left.
Energy Sources

• Renewable energy is not necessarily clean, it is renewable
• Fossil fuels are not necessarily more dirty, they are not renewable
• Complex system
 – Geopolitics
 – Economic prosperity
 – Quality of life
 – Climate destabilization
 – Pollution
 • Health
 • Environment
 • Wildlife and natural habitats
No Free Lunch – Impact of Renewable Energy

- **Wind Energy**
 - Visibility and noise
 - Land use
 - Bird deaths

- **Solar Energy**
 - Manufacturing wastes & energy
 - Land Use

- **Geothermal Energy**
 - Air and water pollution
 - Disposal of hazardous waste
 - Location and land use

- **Biomass**
 - Air pollution
 - Degradation of agricultural land

- **Tidal and River Currents**
 - Impact of fish
 - Navigation and recreation
 - Leaching of chemicals

- **Conventional Hydro**
 - Impact of fish

- **Nuclear Fission**
 - Waste
 - Geopolitics

- **Conventional & Uncoventional Oil**
 - Air pollution
 - Water usage
 - Land use

Most renewable supplies are intermittent, require storage capability

Source: Union of Concerned Scientists
Conservation and Improved Efficiency

• Easiest way to
 – Maintain or improve economic prosperity
 – Maintain or improve quality of life
 – Slow impact of climate destabilization
 – Reduce pollution
 • Health
 • Environment
 • Wildlife and natural habitats

• Requires augmenting our lifestyles
 – How many people drove here alone today?
Conservation will Increase as the Cost of Energy Increases

- Tax energy
- Tax carbon
- Use increased taxes to
 - Further increase conservation and efficiency
 - Develop energy sources and storage devices that reduce/minimize impact
- Conservation will Increase When Money Can be Made
 - Financially reward conservation
 - REDEUCE, reuse, recycle
 - Not Reduce, reuse, RECYCLE
Better Use of Existing Energy Sources

• Energy use is increasing worldwide and in the US
 – Current production of conventional fossil fuels is not expected to be able to keep up with the growth

• Renewable sources
 – Generally have lower impact
 – Goal is only supply 20% of our energy by 2020 or 2030

• How will the other 80% be supplied near-term?
 – Reasonable enhanced oil recovery should be considered
 – Oil Shale
 – Nuclear
 – Coal

• Most renewable sources require storage capability
Oil Shale – Local and Global View

• Local concerns
 – Environment
 – Economy
 – Way of life in Western Colorado

• Global Concerns
 – World energy supply
 – Domestic energy security
Oil Shale Promise or Peril?

• We don’t know yet!

• In-situ processes hold promise
 – Need to continue development to see if this promise can be realized
 – Without overburdening the local environment

• Guidance to the industry
 – Value land, wildlife, clean air and water, economic and energy security, and our future
 – Through careful consideration and an open and transparent process of where it is best to build energy generation facilities

• Industries responsibility to the community
 – Openness to finding the best energy sources for a diverse and reliable energy supply