SLIDES: Water Footprints: Consciousness Raising Meets Risk Management

Steve Malloch

Follow this and additional works at: https://scholar.law.colorado.edu/western-water-law-policy-and-management

Part of the Administrative Law Commons, Agriculture Law Commons, Aquaculture and Fisheries Commons, Biodiversity Commons, Climate Commons, Energy and Utilities Law Commons, Energy Policy Commons, Environmental Health and Protection Commons, Environmental Law Commons, Environmental Policy Commons, Forest Management Commons, Hydrology Commons, Jurisdiction Commons, Land Use Law Commons, Litigation Commons, Natural Resource Economics Commons, Natural Resources and Conservation Commons, Natural Resources Law Commons, Natural Resources Management and Policy Commons, President/Executive Department Commons, Property Law and Real Estate Commons, Public Policy Commons, Risk Analysis Commons, Science and Technology Law Commons, State and Local Government Law Commons, Water Law Commons, and the Water Resource Management Commons

Citation Information
https://scholar.law.colorado.edu/western-water-law-policy-and-management/20

Reproduced with permission of the Getches-Wilkinson Center for Natural Resources, Energy, and the Environment (formerly the Natural Resources Law Center) at the University of Colorado Law School.
Water Footprints: Consciousness Raising Meets Risk Management

Steve Malloch
National Wildlife Federation
March 2009
You can’t manage what you can’t measure

[T]he most important figures that one needs for management are unknown or unknowable...but successful management must nevertheless take account of them.
Carbon Footprint

Remember, "Objects in mirror are closer than they appear."
Figure 1: Proportion of the U.S. Adult Population in the Six Americas

Proportion represented by area

- Alarmed: 18%
- Concerned: 33%
- Cautious: 19%
- Disengaged: 12%
- Doubtful: 11%
- Dismissive: 7%

Highest Belief in Global Warming: Most Concerned, Most Motivated
Lowest Belief in Global Warming: Least Concerned, Least Motivated

Maibach et al., 2009
Does it make sense for a water-short state like Israel to export oranges?

What is the international flow of water embedded in goods?

Does that flow matter? Is looking at it useful?
The concept of ‘virtual water’

Virtual water is the water ‘embodied’ in a product, not in real sense, but in virtual sense. It refers to the water needed for the production of the product.

Global trade in goods and services brings along global trade in ‘virtual water’
The Water Footprint of a product is the same as its ‘virtual water content’, but includes a temporal and spatial dimension: when and where was the water used.
The Water Footprint of a product is the volume of fresh water used to produce the product, summed over the various steps of the production chain.
The Water Footprint consists of three components:

- BLUE (consumptive use of withdrawn water)
- GREEN (consumptive use of soil moisture from precipitation)
- GREY (dilution/pollution)
Assessing the Water Footprint of a product requires analysis of the full production chain.

Raw material production + Processing + Distribution + Retail + (Consumer + Disposal ?)
The water footprint of products

<table>
<thead>
<tr>
<th>Item</th>
<th>Water Footprint (gallons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 lb wheat</td>
<td>155</td>
</tr>
<tr>
<td>1 lb rice</td>
<td>410</td>
</tr>
<tr>
<td>1 sheet paper</td>
<td>2.6</td>
</tr>
<tr>
<td>1 lb cheese</td>
<td>600</td>
</tr>
<tr>
<td>1 lb pork</td>
<td>575</td>
</tr>
<tr>
<td>1 lb beef</td>
<td>1860</td>
</tr>
</tbody>
</table>
The water footprint of beverages

<table>
<thead>
<tr>
<th>Beverage</th>
<th>Water Footprint (gallons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 glass beer</td>
<td>19</td>
</tr>
<tr>
<td>1 glass milk</td>
<td>52</td>
</tr>
<tr>
<td>1 glass OJ</td>
<td>45</td>
</tr>
<tr>
<td>1 glass wine</td>
<td>120</td>
</tr>
<tr>
<td>1 cup tea</td>
<td>8</td>
</tr>
<tr>
<td>1 cup coffee</td>
<td>36</td>
</tr>
</tbody>
</table>

Source: Waterfootprint.org
How is Water Footprint Being Used?

- Corporate risk management
- Corporate branding and social responsibility
- Advocacy
- Ethics based social marketing
Association of Certified Chartered Accountants

Water: The Next Carbon?

- Physical Risk
- Financial Risk
- Regulatory Risk
- Reputational Risk

ACCA 2009
Starbucks Coffee

- Coffee = 37 gallons/cup, global, less for Starbucks sourced
- Milk = 1000 to 1 for that splash of cream
- Latte = 50 gallons
Levi Strauss
Life Cycle of 501 Jeans

- 920 gallons of water
 - 49% growing the cotton
 - 45% washing at home
 - 6% processing

- Working on washing, worrying about cotton
Soda

- 2 liter bottle:
 - 1.3 gallons in the factory
 - 85-120 gallons for the ingredients
Virtual Water
Net Import

Waterfootprint.org
Change in Annual Runoff
Colored States – >8 of 12 GCM’s Agree

Milly et al., 2008
Advocacy

- Water, Human Rights
 - WWF – Water content of a latte
 - Bottled water campaigns
<table>
<thead>
<tr>
<th>Fuel Source</th>
<th>Water gallons/MMBTU</th>
</tr>
</thead>
<tbody>
<tr>
<td>coal to liquid</td>
<td>41-60</td>
</tr>
<tr>
<td>coal to gas</td>
<td>11-26</td>
</tr>
<tr>
<td>tar sands</td>
<td>20-50</td>
</tr>
<tr>
<td>oil shale</td>
<td>8-38</td>
</tr>
<tr>
<td>oil</td>
<td>1-2</td>
</tr>
<tr>
<td>oil EOR</td>
<td>14-2.5k</td>
</tr>
<tr>
<td>coalbed methane</td>
<td>1-161</td>
</tr>
<tr>
<td>soy biodiesel</td>
<td>14k-75k</td>
</tr>
<tr>
<td>corn ethanol</td>
<td>2.5k-24k</td>
</tr>
</tbody>
</table>

Cameron et al 2006
Ethanol and Water Footprint

- 2007 Energy bill goal: 35 billion gallons of ethanol
- A bushel of corn:
 - Consumes 4000 gallons water
 - Yields 2.5 gallons ethanol

17 Million Acre-Feet of Water
You Throw Away 26% of Food You Buy
How Do We Manage Water in a Carbon-Constrained/Climate Disrupted Economy?
NID: 1600-2000
How Do We Manage Water in a Carbon-Constrained/Climate Disrupted Economy?

- Efficiency and conservation
- Integrated water management
- Linking water with forest/floodplain/growth management
- Accounting for embedded energy
- Incorporating water scarcity/variability in policy, strategy, risk management, consumer choice
New Mexico’s Dairy Footprint

2007 Herd – 342,000, 7.3 billion pounds of milk

1 L milk = 1000 L water

Water Footprint = 2.6 Million Acre-Feet
Yakima at a Glance

- About 3.4 MAF annual runoff
 - 1 MAF BuRec storage
 - 1 MAF snowpack storage
 - 2.5 MAF annual BuRec delivery

- 560,000 irrigated acres
 - 1/3 in trees and vines - increasing
 - About $1.3 Billion annual production

- Longstanding salmon issues

- Flood, water quality, groundwater depletion
Precipitation
- +1% by 2020
- +2% by 2040

Snowpack loss
- 27-29% by 2020
- 37-44% by 2040
- 53-65% by 2080

Elsner et al., 2009
Yakima Project: Agricultural Water Supplies

Chance of >25% Delivery Reduction for the Junior 51% of BuRec Contractors

- Historic - 14%
- 2020 – 27-32%
- 2040 – 33-36%
- 2080 – 50-77%

Vano et al., 2009
Supply Options

BuRec – 2008 No Action Alternative
- $7 billion, GW to Hanford, $50 million in pumping cost
Climate Resilient Community Approach

- Approach – use the supply reality to shift the solutions towards climate resilient approaches
- Supply
 - Reservoir expansion
 - Off-stream storage
- Integrated Approach
 - Fish and supply “improve together”
 - Demand management, transfers, efficiency, exchanges
 - Flood issues
- Outreach and Education
 - Climate impacts
 - Flood
 - Groundwater
 - Fundamental shifts in expectations and economy – Water Footprint
So What Use is Water Footprint?

- Corporate responsibility and risk management
- Consumer education about water use, scarcity, variability and climate impacts
- Analysis of policy and project choices
- Changing water politics
More Information

- Waterfootprint.org
- Pacific Institute (several reports, most recent May 2009)
- Association of Chartered Certified Accountants (Water: the Next Carbon? April 2009 report)