9-17-2012

SLIDES: Draft Power in Developing Country Agriculture--South Asia

Arjun Makhijani

Follow this and additional works at: http://scholar.law.colorado.edu/energy-justice-conference-and-technology-exposition

Part of the Business Law, Public Responsibility, and Ethics Commons, Energy Law Commons, Energy Policy Commons, Entrepreneurial and Small Business Operations Commons, Environmental Engineering Commons, Environmental Health and Protection Commons, Environmental Law Commons, Environmental Policy Commons, Environmental Public Health Commons, International Business Commons, International Law Commons, International Public Health Commons, Power and Energy Commons, Science and Technology Commons, Sustainability Commons, Transportation Commons, Water Law Commons, and the Women's Health Commons

Citation Information
http://scholar.law.colorado.edu/energy-justice-conference-and-technology-exposition/18

Reproduced with permission of the Getches-Wilkinson Center for Natural Resources, Energy, and the Environment (formerly the Natural Resources Law Center) at the University of Colorado Law School.
Draft power in developing county agriculture – South Asia

Arjun Makhijani, Ph.D.
Energy Justice conference
University of Colorado
September 17, 2012
www.ieer.org
Old and new draft power
Overview of energy, 1985

<table>
<thead>
<tr>
<th>Country</th>
<th>Modern</th>
<th>Traditional²</th>
<th>Draft animals³</th>
<th>Total (rounded)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bangladesh</td>
<td>2</td>
<td>5</td>
<td>1.5 to 3</td>
<td>9 to 10</td>
</tr>
<tr>
<td>India</td>
<td>8</td>
<td>6</td>
<td>2.3 to 4.6</td>
<td>16 to 19</td>
</tr>
<tr>
<td>Nepal</td>
<td>1</td>
<td>12</td>
<td>3.5 to 7</td>
<td>17 to 20</td>
</tr>
<tr>
<td>Pakistan</td>
<td>7</td>
<td>6</td>
<td>1.9 to 3.8</td>
<td>14 to 16</td>
</tr>
</tbody>
</table>

Notes for Table 4:
Rural per capital energy use, South Asia, 1985 - direct draft animal intakes only. Non-working animals add 20 to 60%.

<table>
<thead>
<tr>
<th>Country</th>
<th>Modern</th>
<th>Traditional</th>
<th>Draft animals</th>
<th>Total (rounded)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bangladesh</td>
<td>0.3</td>
<td>5</td>
<td>2 to 4</td>
<td>7 to 9</td>
</tr>
<tr>
<td>India</td>
<td>1</td>
<td>7</td>
<td>3 to 7</td>
<td>11 to 15</td>
</tr>
<tr>
<td>Nepal</td>
<td>0.2</td>
<td>8</td>
<td>5 to 10</td>
<td>13 to 18</td>
</tr>
<tr>
<td>Pakistan</td>
<td>1</td>
<td>7</td>
<td>3 to 5</td>
<td>11 to 13</td>
</tr>
</tbody>
</table>
Total and per hectare draft power - about 0.5 hp per animal is typical

Draft Animal Power in South Asian Agriculture

<table>
<thead>
<tr>
<th>Country</th>
<th>Cultivated Area, 10^6 ha.</th>
<th>Draft animal power, 10^6 kW</th>
<th>Specific power draft animals, kW/ha. 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bangladesh</td>
<td>9.2</td>
<td>3.0</td>
<td>0.36</td>
</tr>
<tr>
<td>India</td>
<td>169</td>
<td>33.9</td>
<td>0.22</td>
</tr>
<tr>
<td>Nepal</td>
<td>2.3</td>
<td>1.2</td>
<td>0.57</td>
</tr>
<tr>
<td>Pakistan</td>
<td>20.8</td>
<td>3.8</td>
<td>0.2</td>
</tr>
<tr>
<td>U.S.A. (machines)</td>
<td>190</td>
<td>266</td>
<td>1.4</td>
</tr>
</tbody>
</table>
Draft animals for agriculture - pluses

1. They reproduce themselves and do not require large capital outlays if an appropriate stock of animals is maintained.

2. They provide cow-dung as fuel (or return nutrients to the soil), milk, meat, and leather.

3. They are flexible in that they can be used for many different purposes such as ploughing, threshing, irrigation, and transportation.

4. They can be obtained in small unit sizes (in terms of power per unit), a big consideration for small farmers.

5. They are not dependent on external supplies of fuel, so that the element of risk in fuel cost is minimized.

6. They largely involve non-monetized energy sources, and use non-monetized labor which is available especially in the off-season.

7. They can provide peak power at several times the average power over short periods.
Draft animals - minuses

- Low efficiency – energy consumption continues for non-working animals and non-working periods.
- Large land requirements
- Insufficient power availability – large deficits
- High cost if the farmer does not own breeding stock
- Land shortage slows population growth
- Increases peak labor requirements
- Poor farmers have to borrow money and cattle and are last in line in the peak season when they have power deficits
- Draft power shortages at harvest can cause large crop losses.
Efficiency comparison – modern versus traditional (including non-working animals)

Comparison of Energy Inputs and Outputs for Modern Energy Sources and Draft Animals

<table>
<thead>
<tr>
<th>Energy Source</th>
<th>Energy Input, petajoules</th>
<th>Efficiency, %</th>
<th>Energy Output, petajoules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modern Sources (oil, electricity)</td>
<td>560</td>
<td>15 to 20</td>
<td>84 to 110</td>
</tr>
<tr>
<td>Draft animals (system basis)</td>
<td>2700 to 4500</td>
<td>1 to 3</td>
<td>45 to 90</td>
</tr>
</tbody>
</table>
Grazing land requirements

<table>
<thead>
<tr>
<th>Country</th>
<th>Cattle Energy, petajoules</th>
<th>Grazing Land requirements, 10^6 ha.</th>
<th>Permanent Pasture available, 10^6 ha.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bangladesh</td>
<td>300 to 600</td>
<td>3 to 6</td>
<td>0.6</td>
</tr>
<tr>
<td>India</td>
<td>3,600 to 7,200</td>
<td>35 to 70</td>
<td>12</td>
</tr>
<tr>
<td>Nepal</td>
<td>120 to 240</td>
<td>1 to 2</td>
<td>2.0</td>
</tr>
<tr>
<td>Pakistan</td>
<td>400 to 800</td>
<td>4 to 8</td>
<td>5.0</td>
</tr>
</tbody>
</table>
Effect of power availability

Annual Energy Input for a Two-Crop Irrigated System, GJ/ha/year

1. Draft animals: 34 to 56
2. Diesel irrigation: 20
3. Fertilizer input: 200 kg urea/ha/year: 30
 Total energy input: 84 to 106

Energy outputs

- **Total energy output:** 200

Annual Energy Input for a One-Crop Unirrigated System, GJ/ha/year

1. Draft animals: 11 to 19
2. Total energy input: 11 to 19

Energy outputs

- **Total energy output:** 23

- **1. Food:** 5 tons/ha/year @ 14 GJ/ton: 70
- **2. Crop residues:** 10 tons/ha/year @ 13 GJ/ton: 130
 Total energy output: 200
Approaches to solutions

• Deficit of power in agriculture is large in South Asia. In the mid-1980s, it may be on the order of 100 GW. This cannot be met by increasing animal population.

• Marginal draft animal efficiency to increased feed of poorly nourished animals is high – up to 18 percent, which is comparable to petroleum power machines. High productivity feed production.

• Small petroleum machines for those who don’t have draft animals

• Direct mechanical power from wind for irrigation.
Critical requirements for progress

• No solutions will be forthcoming until the energy inputs and outputs of draft animals are included in energy data.
• Data need refining. At present they are sparse and very rough. Regional field measurements are needed both to define needs, to measure available power, inputs, and outputs.
• Methodology needs to be developed and standardized: counting non-working animals other outputs like mea and milk and cow dung, for instance.
• The question of draft power needs to be joined to the broader issues of rural energy: cooking, electricity for lighting, irrigation, and other uses, skip-the-grid approaches for areas remote from the grid.
• Institutional issues – local utilities for energy and water, including leasing of farm machines?
URL for report

• http://ieer.org/resource/reports/draft-power-south-asian-food-grain-production/