SLIDES: Is There a Dust Bowl in Our Future?: Projections for the Eastern Rockies and Central Great Plains

Dennis Ojima

Follow this and additional works at: https://scholar.law.colorado.edu/water-climate-uncertainty

Part of the Climate Commons, Environmental Law Commons, Environmental Policy Commons, Natural Resources and Conservation Commons, Natural Resources Law Commons, Natural Resources Management and Policy Commons, Public Policy Commons, Science and Technology Law Commons, State and Local Government Law Commons, Urban Studies and Planning Commons, Water Law Commons, and the Water Resource Management Commons

Citation Information

Reproduced with permission of the Getches-Wilkinson Center for Natural Resources, Energy, and the Environment (formerly the Natural Resources Law Center) at the University of Colorado Law School.
Is There a Dust Bowl in Our Future?
Projections for the Eastern Rockies and Central Great Plains.

Water, Climate and Uncertainty Conference
Boulder, CO

11 June 2003

Dennis Ojima
SHORT ANSWER:
YES
LONG ANSWER:
WHEN?
HOW BIG?
OVER WHAT REGION?
GIVEN HUGE UNCERTAINTIES

WHAT SHOULD WE DO?
COPING STRATEGIES

• USE AVAILABLE SCIENCE INFORMATION
 - Theory
 - Techniques
 - Facts

• UNDERSTAND VULNERABILITIES
 - Inter-relationships
 - Current Constraints
 - Current Strategies

• MULTI-SECTORAL PERSPECTIVE
CASE IN POINT

CENTRAL GREAT PLAINS
CLIMATE CHANGE IMPACT ASSESSMENT
Key Questions

• Do people worry about climate change?
• What are the current concerns about climate variability and change?
• What do people need to know that isn’t already known about climate change (future research)?
OUR APPROACH

• What We Know
• Concerns
• Develop Scenarios
• Evaluate Suite of Responses
• Coping Strategies
Platte River Basin, Colorado

Precipitation

<table>
<thead>
<tr>
<th>Year</th>
<th>Annual Inches</th>
</tr>
</thead>
<tbody>
<tr>
<td>1895</td>
<td>20</td>
</tr>
<tr>
<td>1902</td>
<td>25</td>
</tr>
<tr>
<td>1909</td>
<td>10</td>
</tr>
<tr>
<td>1916</td>
<td>15</td>
</tr>
<tr>
<td>1923</td>
<td>20</td>
</tr>
<tr>
<td>1930</td>
<td>18</td>
</tr>
<tr>
<td>1937</td>
<td>22</td>
</tr>
<tr>
<td>1944</td>
<td>16</td>
</tr>
<tr>
<td>1951</td>
<td>24</td>
</tr>
<tr>
<td>1958</td>
<td>20</td>
</tr>
<tr>
<td>1965</td>
<td>18</td>
</tr>
<tr>
<td>1972</td>
<td>22</td>
</tr>
<tr>
<td>1979</td>
<td>16</td>
</tr>
<tr>
<td>1986</td>
<td>24</td>
</tr>
<tr>
<td>1993</td>
<td>18</td>
</tr>
<tr>
<td>2000</td>
<td>16</td>
</tr>
</tbody>
</table>

Average Temperature

<table>
<thead>
<tr>
<th>Year</th>
<th>deg F</th>
</tr>
</thead>
<tbody>
<tr>
<td>1895</td>
<td>48</td>
</tr>
<tr>
<td>1902</td>
<td>50</td>
</tr>
<tr>
<td>1909</td>
<td>40</td>
</tr>
<tr>
<td>1916</td>
<td>42</td>
</tr>
<tr>
<td>1923</td>
<td>44</td>
</tr>
<tr>
<td>1930</td>
<td>46</td>
</tr>
<tr>
<td>1937</td>
<td>44</td>
</tr>
<tr>
<td>1944</td>
<td>42</td>
</tr>
<tr>
<td>1951</td>
<td>44</td>
</tr>
<tr>
<td>1958</td>
<td>46</td>
</tr>
<tr>
<td>1965</td>
<td>44</td>
</tr>
<tr>
<td>1972</td>
<td>46</td>
</tr>
<tr>
<td>1979</td>
<td>44</td>
</tr>
<tr>
<td>1986</td>
<td>46</td>
</tr>
<tr>
<td>1993</td>
<td>44</td>
</tr>
<tr>
<td>2000</td>
<td>46</td>
</tr>
</tbody>
</table>
CREATING SCENARIOS

• LOOK TO THE PAST
• CRITICAL CHARACTERISTICS OF INTEREST
• APPLY "WHAT IF"
• USE HYPOTHEORIZED TRAJECTORIES
Middle Boulder Creek

Eastern Colorado

(Source: Woodhouse et al., 2002)
ESTES PARK AVERAGE TEMPERATURE

Scenario Data

Climate changes

Observed Data

Deltas
Assessment Process

• Identify vulnerabilities and opportunities related to climate change
• Gather information from and provide information to stakeholders
• Run stakeholder-defined analyses
• Assess future coping strategies
Land Use

• Agriculture and livestock major land uses

• Major human transformation of land

• Fewer, larger operations - increase in high-tech operations
CURRENT STRESSES

• Climate Variability
• Global Market Changes
• Decline In Rural Infrastructure
• Loss Of Biodiversity/Invasive Species
• Urban And Exurban Expansion
• Air And Water Pollution
• Water Competition
• N Deposition
Factors in Land Use Decision Making

- **Land** - Soil, moisture, and knowledge of the land
- **Family** - Family priorities
- **Economy** - Input costs, commodity prices, and credit
- **Environment** - Personal environmental concerns and conservation/rotation practices
- **Risk** - Reducing risk
- **Operation** - Equipment and labor availability
- **Policies** - Government support policies
- **Community** - Community pressures

(Bohren and Knop)
Source: Woodhouse and Overpeck, 1998
GCM Scenario for the Great Plains

<table>
<thead>
<tr>
<th></th>
<th>2030</th>
<th>2090</th>
<th>2030</th>
<th>2090</th>
<th>2030</th>
<th>2090</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>max °C</td>
<td>2.6</td>
<td>6.1</td>
<td>2.5</td>
<td>6.5</td>
<td>1.0</td>
<td>1.2</td>
</tr>
<tr>
<td>min °C</td>
<td>1.4</td>
<td>3.1</td>
<td>1.8</td>
<td>4.2</td>
<td>1.1</td>
<td>1.2</td>
</tr>
<tr>
<td>ppt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ratio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Winter Snowpack (Northern Great Plains)

<table>
<thead>
<tr>
<th>Year Period</th>
<th>Snowpack (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1961-1990</td>
<td>18</td>
</tr>
<tr>
<td>2030 CCC</td>
<td>16</td>
</tr>
<tr>
<td>2090 CCC</td>
<td>12</td>
</tr>
<tr>
<td>2030 Had</td>
<td>14</td>
</tr>
<tr>
<td>2090 Had</td>
<td>10</td>
</tr>
</tbody>
</table>
Extreme Rainfall (>50mm) in 24 hrs.

* sum of grid cells over each year where an extreme rainfall event occurs
Number of Hot Day Events (Great Plains)

- 1961-1990
- 2030 CCC
- 2030 Had
- 2090 CCC
- 2090 Had

number of events

- 0
- 2
- 4
- 6
- 8
- 10
- 12

- 32 C
- 38 C
- 41 C
Potential Impacts

- Modified vulnerability of farm/ranch families to climate and market stresses
- Crop and livestock production modified
- Water use competition impacted
- Water quality changed
- Expansion of weeds, pests, and diseases
- Change plant-animal communities
- Fire and storm patterns altered
High Plains (Ogallala) Aquifer Decline

Drummond USGS
1997 Irrigation vs. Historical Average (1974-97)
Coping Strategies

- Better preparation for extreme events
- Flexible Management Strategies
- Diversification of practices to take advantage of opportunities/reduce vulnerabilities
- Increased Efficiency of Water Storage Areas
- Increasing soil organic matter to increase water holding capacity
- Participation in policy discussions
- Develop better communication at all levels
What Have We Learned

• *Seasonal changes* to snowmelt will impact water storage and delivery systems

• *Soil carbon management* is critical to coping with climate change - seen as "win-win" situation

• *Technological and information transfers* do not always reach the stakeholders
Conclusions

- impacts on natural systems cannot be looked at without also looking at impacts on social systems
- “WIN-WIN” solutions are feasible
- vulnerability of currently stressed sectors in the great plains will be exacerbated
- change in extreme events and variability in climate will affect livelihood more than monotonic change in climate
- extra-regional forces exacerbate vulnerability to climate change