SLIDES: Regulating Oil and Gas Emissions in the Denver Julesberg Basin

Garry Kaufman

Follow this and additional works at: https://scholar.law.colorado.edu/water-and-air-quality-issues-in-oil-and-gas-development

Part of the Energy and Utilities Law Commons, Environmental Health and Protection Commons, Environmental Law Commons, Environmental Public Health Commons, Hydraulic Engineering Commons, Natural Resource Economics Commons, Natural Resources Law Commons, Oil, Gas, and Energy Commons, Oil, Gas, and Mineral Law Commons, Science and Technology Law Commons, and the Water Law Commons

Citation Information

Reproduced with permission of the Getches-Wilkinson Center for Natural Resources, Energy, and the Environment (formerly the Natural Resources Law Center) at the University of Colorado Law School.
Regulating Oil and Gas Emissions in the Denver Julesburg Basin

Garry Kaufman
Deputy Director
Colorado Air Pollution Control Division
June 6, 2014
Overview

- Air quality need for oil and gas emission reductions

- Past efforts
 - 8-Hour Ozone Early Action Compact
 - 8-Hour Ozone Action Plan

- 2014 Oil and Gas Rulemaking

- Conclusions
Historically oil and gas emission reduction strategies implemented to address violations of the ozone National Ambient Air Quality Standard in the Denver Metro/North Front Range Area

- Primarily volatile organic compound (VOC) reduction strategies

2014 rulemaking also considered methane reductions as part of Colorado’s efforts to address global climate change
Three Year Average 4th Maximum Ozone Values

2013 data through 30 September

<table>
<thead>
<tr>
<th>Site Name</th>
<th>AQS #</th>
<th>2011 8-hr. O3 4th Max Value (ppm)</th>
<th>2012 8-hr. O3 4th Max Value (ppm)</th>
<th>2013 8-hr. O3 4th Max Value (ppm)</th>
<th>3-yr. Avg. 4th Max Value (ppm)</th>
<th>2014 Highest Allowable 4th Max Value (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welby</td>
<td>08-001-3001</td>
<td>0.075</td>
<td>0.077</td>
<td>0.077</td>
<td>0.076</td>
<td>0.073</td>
</tr>
<tr>
<td>Highland</td>
<td>08-005-0002</td>
<td>0.078</td>
<td>0.080</td>
<td>0.079</td>
<td>0.079</td>
<td>0.068</td>
</tr>
<tr>
<td>Aurora East</td>
<td>08-005-0006</td>
<td>0.077</td>
<td>0.074</td>
<td>0.073</td>
<td>0.074</td>
<td>0.080</td>
</tr>
<tr>
<td>S. Boulder Creek</td>
<td>08-013-0011</td>
<td>0.076</td>
<td>0.076</td>
<td>0.079</td>
<td>0.077</td>
<td>0.072</td>
</tr>
<tr>
<td>CAMP</td>
<td>08-031-0002</td>
<td>---</td>
<td>0.068</td>
<td>0.067</td>
<td>---</td>
<td>0.092</td>
</tr>
<tr>
<td>La Casa</td>
<td>08-013-0026</td>
<td>---</td>
<td>---</td>
<td>0.071</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Chatfield State Park</td>
<td>08-035-0004</td>
<td>0.082</td>
<td>0.086</td>
<td>0.083</td>
<td>0.083</td>
<td>0.058</td>
</tr>
<tr>
<td>USAF Academy</td>
<td>08-041-0013</td>
<td>0.074</td>
<td>0.075</td>
<td>0.074</td>
<td>0.074</td>
<td>0.078</td>
</tr>
<tr>
<td>Manitou</td>
<td>08-041-0016</td>
<td>0.075</td>
<td>0.075</td>
<td>0.072</td>
<td>0.074</td>
<td>0.080</td>
</tr>
<tr>
<td>Welch</td>
<td>08-059-0005</td>
<td>0.077</td>
<td>0.079</td>
<td>0.080</td>
<td>0.078</td>
<td>0.068</td>
</tr>
<tr>
<td>Rocky Flats North</td>
<td>08-059-0006</td>
<td>0.081</td>
<td>0.084</td>
<td>0.085</td>
<td>0.083</td>
<td>0.058</td>
</tr>
<tr>
<td>NREL</td>
<td>08-059-0011</td>
<td>0.083</td>
<td>0.081</td>
<td>0.084</td>
<td>0.082</td>
<td>0.062</td>
</tr>
<tr>
<td>Aspen Park</td>
<td>08-059-0013</td>
<td>0.072</td>
<td>0.077</td>
<td>0.077</td>
<td>0.075</td>
<td>0.073</td>
</tr>
<tr>
<td>Fort Collins - West</td>
<td>08-069-0011</td>
<td>0.080</td>
<td>0.080</td>
<td>0.082</td>
<td>0.080</td>
<td>0.065</td>
</tr>
<tr>
<td>Rist Canyon *</td>
<td>08-069-0012</td>
<td>0.073</td>
<td>0.071</td>
<td>0.066</td>
<td>0.070</td>
<td>---</td>
</tr>
<tr>
<td>Fort Collins - CSU</td>
<td>08-069-1004</td>
<td>0.068</td>
<td>0.074</td>
<td>0.074</td>
<td>0.072</td>
<td>0.079</td>
</tr>
<tr>
<td>Weld County Tower</td>
<td>08-123-0009</td>
<td>0.077</td>
<td>0.080</td>
<td>0.073</td>
<td>0.076</td>
<td>0.074</td>
</tr>
<tr>
<td>NPS - Rocky Mtn. NP</td>
<td>08-069-0007</td>
<td>0.077</td>
<td>0.079</td>
<td>0.074</td>
<td>0.076</td>
<td>0.074</td>
</tr>
<tr>
<td>NOAA - BAO Tower</td>
<td>n/a</td>
<td>0.076</td>
<td>0.077</td>
<td>0.064</td>
<td>0.072</td>
<td>0.086</td>
</tr>
<tr>
<td>NOAA - Niwot Ridge</td>
<td>n/a</td>
<td>0.067</td>
<td>0.076</td>
<td>0.070</td>
<td>0.071</td>
<td>0.081</td>
</tr>
</tbody>
</table>

* Rist Canyon site closed 6/28. (NOAA thru 6/23)
Colorado (9-County NAA)
2011 - Anthropogenic VOC Emissions
538 tons/day

- Point: 39.2 tons (7%)
- Area: 75.8 tons (14%)
- On-Road Mobile: 89.3 tons (17%)
- O&G (permitted & unpermitted): 26.5 tons (5%)
- Non-Road Mobile: 306.6 tons (57%)
2018 DVF Projections O&G Sens Tests

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>2008-2012 DVC</th>
<th>2018a2 DVC</th>
<th>08COOG DVC</th>
<th>Diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>080013001</td>
<td>Welby</td>
<td>70.3</td>
<td>66.9</td>
<td>65.6</td>
<td>-1.3</td>
</tr>
<tr>
<td>080050002</td>
<td>Highland</td>
<td>75.5</td>
<td>71.2</td>
<td>70.4</td>
<td>-0.8</td>
</tr>
<tr>
<td>080130011</td>
<td>S. Boulder Creek</td>
<td>73.3</td>
<td>69.8</td>
<td>68.3</td>
<td>-1.5</td>
</tr>
<tr>
<td>080310014</td>
<td>Carriage</td>
<td>70.0</td>
<td>67.6</td>
<td>66.4</td>
<td>-1.2</td>
</tr>
<tr>
<td>080350004</td>
<td>Chatfield State</td>
<td>78.3</td>
<td>73.9</td>
<td>73.1</td>
<td>-0.8</td>
</tr>
<tr>
<td>080410013</td>
<td>USAF Academy</td>
<td>68.3</td>
<td>61.9</td>
<td>61.9</td>
<td>0.0</td>
</tr>
<tr>
<td>080410016</td>
<td>Manitou Springs</td>
<td>71.0</td>
<td>64.6</td>
<td>64.5</td>
<td>-0.1</td>
</tr>
<tr>
<td>080590002</td>
<td>Arvada</td>
<td>73.5</td>
<td>71.3</td>
<td>69.8</td>
<td>-1.5</td>
</tr>
<tr>
<td>080590005</td>
<td>Welch</td>
<td>73.3</td>
<td>69.7</td>
<td>69.0</td>
<td>-0.7</td>
</tr>
<tr>
<td>080590006</td>
<td>Rocky Flats North</td>
<td>78.7</td>
<td>75.0</td>
<td>73.3</td>
<td>-1.7</td>
</tr>
<tr>
<td>080590011</td>
<td>NREL</td>
<td>75.3</td>
<td>72.9</td>
<td>71.6</td>
<td>-1.3</td>
</tr>
<tr>
<td>080671004</td>
<td>La Plata 1004</td>
<td>72.7</td>
<td>67.3</td>
<td>67.7</td>
<td>0.4</td>
</tr>
<tr>
<td>080677001</td>
<td>La Plata 7001</td>
<td>67.7</td>
<td>62.9</td>
<td>63.4</td>
<td>0.5</td>
</tr>
<tr>
<td>080677003</td>
<td>La Plata 7003</td>
<td>67.0</td>
<td>62.7</td>
<td>63.0</td>
<td>0.3</td>
</tr>
<tr>
<td>080690007</td>
<td>Larimer 0007</td>
<td>74.7</td>
<td>68.0</td>
<td>67.2</td>
<td>-0.8</td>
</tr>
<tr>
<td>080690011</td>
<td>Fort Collins - West</td>
<td>76.0</td>
<td>72.0</td>
<td>69.0</td>
<td>-3.0</td>
</tr>
<tr>
<td>080691004</td>
<td>Fort Collins</td>
<td>66.3</td>
<td>63.1</td>
<td>60.3</td>
<td>-2.8</td>
</tr>
<tr>
<td>080830101</td>
<td>Montezuma010</td>
<td>68.0</td>
<td>63.2</td>
<td>63.2</td>
<td>0.0</td>
</tr>
<tr>
<td>081230009</td>
<td>Greeley - Weld</td>
<td>73.0</td>
<td>73.7</td>
<td>66.9</td>
<td>-6.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>72.3</td>
<td>68.3</td>
<td>67.1</td>
<td>-1.2</td>
</tr>
</tbody>
</table>
Past Efforts

- Prior to the early 2000’s oil and gas sector was considered to be an insignificant contributor to VOC emissions in the Denver Metro/North Front Range Area.

- Until 2003, condensate storage tanks at oil and gas production facilities were exempt from reporting and permitting requirements.

- Little or no understanding of the potential for VOC leakage and venting at oil and gas production facilities.
Past Efforts

- In early 2000’s APCD discovered that “flashing” at condensate storage tanks was a significant source of VOC emissions in DMA/NFR
 - “flashing” occurs when petroleum liquid that is under high pressure underground is put into an atmospheric tank
 - Previously APCD assumed that emissions from tank were limited to evaporative losses (working and breathing losses)

- For 2002 estimated flashing emissions in DMA/NFR of 134 tons per day
 - 2004 Early Action Compact emission inventory
Colorado (9-County O3 NAA)
2002 - Anthropogenic VOC Emissions
516 tons/day

- Point: 152.8 tons (30%)
- Area: 73.1 tons (14%)
- On-Road Mobile: 96.9 tons (19%)
- O&G (permitted & unpermitted): 138.0 tons (27%)
- Non-Road Mobile
Past Efforts: 2004 EAC

To avoid 8-hour Ozone NAAQS non-attainment designation for the DMA/NFR, Colorado entered into Early Action Compact with EPA in 2004 (EAC), which included 1st Colorado regulations for reducing VOC emissions from oil and gas operations

- Operators in DMA/NFR required to reduce condensate tank emissions by 47.5% on a system-wide basis during ozone season (May 1–September 30)
 - Lesser control level during rest of year
- Control dehydrators emitting 15 tpy or greater VOC
- Engine controls
- Leak detection at existing gas plants
Past Efforts: 2006 EAC

- 2004 condensate tank emission reduction requirements assumed modest growth in emissions
 - 2002 uncontrolled emissions = 134 tpd
 - 2007 projected uncontrolled emissions = 146 tpd

- By 2006 it was clear that growth in tank emissions was significantly underestimated
 - 2006 uncontrolled emissions = 211 tpd

- To address growth Air Quality Control Commission increased tank control percentage
 - 75% control during ozone season starting in 2007
 - 78% control during ozone season starting in 2012
Past Efforts: 2006 EAC

- All tanks required to be controlled during 1st 90 days of production
 - Production/emissions highest during this period and declines thereafter
 - Prior to 2006, tanks were not being controlled during this initial period to allow operators to determine expected production/emissions

- Additional monitoring, recordkeeping and reporting requirements to enhance compliance

- New state-wide rules to proactively address oil and gas emissions outside the DMA/NFR
Past Efforts: 2008 Ozone Action Plan

- DMA/NFR 8-Hour Ozone non-attainment designation in 2007

- Extensive inventory analysis and photochemical modeling to identify controls and demonstrate projected compliance with standard by 2010

- Additional oil and gas emission reduction strategies
 - Increase tank control percentage (81% in 2009, 90% in 2011)
 - Low-bleed pneumatic requirement (projected 23 tpd emission reduction)
2008 OAP VOC Inventory

Colorado (9-County O3 NAA)
2006 - Anthropogenic VOC Emissions
479 tons/day

- Point: 129.7 tons (27%)
- Area: 65.3 tons (13%)
- On-Road Mobile: 66.3 tons (14%)
- O&G (permitted & unpermitted): 185.2 tons (39%)
- Non-Road Mobile: 32.1 tons (7%)
2008 OAP Oil and Gas Inventory

Colorado (9-County NAA)
2006 O&G Sources
VOC Emissions - 185.2 tons/day

- O&G - Tanks
- O&G Area - Venting/Fugitives
- O&G Area - Pneumatics/Pumps
- O&G Area - Engines/Rigs
- O&G Point Sources

- 126.5 68%
- 24.8 13%
- 16.2 9%
- 10.8 6%
- 6.8 4%
New rules target VOC and methane emissions from the oil and gas production sector
- 1st in the nation rules to specifically require methane emission reductions from O&G

New rules expected to reduce VOC emissions by approximately 94,000 tpy, methane emissions by approximately 64,000–113,000 tpy, at an overall annual cost of approximately $42 million

New rules establish emission reduction requirements for the largest O&G source categories
- Tanks
- Fugitives/Venting
- Pneumatic devices
Oil and Gas VOC Emissions

Colorado (Statewide) 2011 O&G Sources VOC Emissions - 576 tons/day

- 116.4 (20%)
- 51.4 (9%)
- 29.9 (5%)
- 19.4 (3%)
- 11.9 (2%)
- 3.0 (1%)

- O&G - Tanks
- O&G Area - Venting/Fugitives
- O&G Area - Pneumatics/Pumps
- O&G Point - Industrial Processes
- O&G Point - Evaporation
- O&G Point - Engines
- O&G Area - Engines/Rigs
Colorado (9-County NAA) 2011 O&G Sources VOC Emissions - 306.6 tons/day

- **242.7** 79% O&G - Tanks
- **40.1** 13% O&G Area - Venting/Fugitives
- **6.7** 2% O&G Area - Pneumatics/Pumps
- **5.4** 2% O&G Point - Industrial Processes
- **6.5** 2% O&G Point - Evaporation
- **4.3** 2% O&G Point - Engines
- **0.8** 0% O&G Area - Engines/Rigs
Storage Tank Reduction Strategies

- Expand control requirements for storage tanks
 - Lower statewide control threshold from 20 tons per year to 6 tons per year
 - Include crude oil and produced water storage tanks
 - Require controls during the first 90 days of production statewide

- Improve capture of emissions at controlled tanks
 - Controlled tanks must be operated without venting to the atmosphere
 - Establish requirements for Storage Tank Emission Management systems (STEM)
 - Capture performance evaluation
 - Certified design to minimize emissions
 - Extensive instrument based monitoring
 - Continual improvement
Storage Tank Capture Requirements

- Emission reduction benefits from storage tank controls premised on capturing emissions and routing them to the control device

- Input pressure for many controlled tanks is too high (above atmospheric)
 - During high pressure dumps to the tank, the pressure relief valve (PRV) and thief hatch may release to prevent tank failure
 - Results in uncontrolled flashing losses from thief hatch and PRV
Leak Detection and Repair

- Establish LDAR requirements for compressor stations and well production facilities
 - Frequent monitoring using Method 21 or infra-red (IR) cameras
 - Tiered monitoring schedule to focus on the highest emitting facilities and reduce the burdens on smaller facilities
 - Establishes the most comprehensive leak detection program for oil and gas facilities in the nation
 - Repair schedule for identified leaks
 - Recordkeeping and reporting requirements
Additional Emission Reduction Strategies

- Expand low-bleed pneumatic controller requirements statewide
- Require capture or control of the gas stream at well production facilities
- Establish requirements to minimize emissions during well maintenance
- Require auto-igniters on all combustion devices
- Expand control requirements for glycol dehydrators
 - Lower control threshold from 15 tons per year to 6 tons per year
 - More stringent threshold for facilities near populated areas
Technical Support for 2014 Rulemaking

- Significantly enhanced inventories
- More refined photochemical modeling
- EPA sponsored cost and benefit analyses
- Bottom–up surveys of oil and gas emissions
- Top–down inventory assessments
 - Ground based measurements
 - Airplane measurements
- Infra–red leak detection
- Sophisticated measurements of incomplete tank emission capture
Conclusions

- Advances in drilling technologies and the resultant increases in production in the DJ Basin have created potential significant additional impacts on air quality resources.

- Increased knowledge of oil and gas emissions, better monitoring techniques, and advances in control technologies has allowed us to address these potential impacts.

- Ongoing assessment of emissions and further refinement of control technologies should allow us to further minimize air impacts from oil and gas development.