Document Type
Article
Publication
International Data Privacy Law
Year
2021
Citation Information
Margot E. Kaminski and Gianclaudio Malgieri, Algorithmic Impact Assessments Under the GDPR: Producing Multi-Layered Explanations, 11 Int'l Data Priv. L. 125 (2021), available at https://scholar.law.colorado.edu/faculty-articles/1510.
DOI
https://doi.org/10.1093/idpl/ipaa020
Abstract
Policy-makers, scholars, and commentators are increasingly concerned with the risks of using profiling algorithms and automated decision-making. The EU’s General Data Protection Regulation (GDPR) has tried to address these concerns through an array of regulatory tools. As one of us has argued, the GDPR combines individual rights with systemic governance, towards algorithmic accountability. The individual tools are largely geared towards individual “legibility”: making the decision-making system understandable to an individual invoking her rights. The systemic governance tools, instead, focus on bringing expertise and oversight into the system as a whole, and rely on the tactics of “collaborative governance,” that is, use public-private partnerships towards these goals. How these two approaches to transparency and accountability interact remains a largely unexplored question, with much of the legal literature focusing instead on whether there is an individual right to explanation.
The GDPR contains an array of systemic accountability tools. Of these tools, impact assessments (Art. 35) have recently received particular attention on both sides of the Atlantic, as a means of implementing algorithmic accountability at early stages of design, development, and training. The aim of this paper is to address how a Data Protection Impact Assessment (DPIA) links the two faces of the GDPR’s approach to algorithmic accountability: individual rights and systemic collaborative governance. We address the relationship between DPIAs and individual transparency rights. We propose, too, that impact assessments link the GDPR’s two methods of governing algorithmic decision-making by both providing systemic governance and serving as an important “suitable safeguard” (Art. 22) of individual rights.
After noting the potential shortcomings of DPIAs, this paper closes with a call — and some suggestions — for a Model Algorithmic Impact Assessment in the context of the GDPR. Our examination of DPIAs suggests that the current focus on the right to explanation is too narrow. We call, instead, for data controllers to consciously use the required DPIA process to produce what we call “multi-layered explanations” of algorithmic systems. This concept of multi-layered explanations not only more accurately describes what the GDPR is attempting to do, but also normatively better fills potential gaps between the GDPR’s two approaches to algorithmic accountability.
Copyright Statement
Copyright protected. Use of materials from this collection beyond the exceptions provided for in the Fair Use and Educational Use clauses of the U.S. Copyright Law may violate federal law. Permission to publish or reproduce is required.
Included in
Administrative Law Commons, Computer Law Commons, Human Rights Law Commons, Privacy Law Commons
Comments
"© The Author(s) 2020. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com."